d x = \quad d ( a x )
Solve for a (complex solution)
\left\{\begin{matrix}\\a=1\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=0\text{ or }d=0\end{matrix}\right.
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&a=1\text{ or }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=1\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=0\text{ or }d=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&a=1\text{ or }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
dax=dx
Swap sides so that all variable terms are on the left hand side.
dxa=dx
The equation is in standard form.
\frac{dxa}{dx}=\frac{dx}{dx}
Divide both sides by dx.
a=\frac{dx}{dx}
Dividing by dx undoes the multiplication by dx.
a=1
Divide dx by dx.
dx-dax=0
Subtract dax from both sides.
-adx+dx=0
Reorder the terms.
\left(-ax+x\right)d=0
Combine all terms containing d.
\left(x-ax\right)d=0
The equation is in standard form.
d=0
Divide 0 by -ax+x.
dax=dx
Swap sides so that all variable terms are on the left hand side.
dxa=dx
The equation is in standard form.
\frac{dxa}{dx}=\frac{dx}{dx}
Divide both sides by dx.
a=\frac{dx}{dx}
Dividing by dx undoes the multiplication by dx.
a=1
Divide dx by dx.
dx-dax=0
Subtract dax from both sides.
-adx+dx=0
Reorder the terms.
\left(-ax+x\right)d=0
Combine all terms containing d.
\left(x-ax\right)d=0
The equation is in standard form.
d=0
Divide 0 by -ax+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}