d f = \frac { \partial T } { \partial x } d x + \frac { \partial f } { \partial y } d y
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&f=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&f=0\end{matrix}\right.
Solve for T (complex solution)
T\in \mathrm{C}
f=0\text{ or }d=0
Solve for T
T\in \mathrm{R}
f=0\text{ or }d=0
Share
Copied to clipboard
df-\frac{\mathrm{d}(T)}{\mathrm{d}x}dx=\frac{\mathrm{d}(f)}{\mathrm{d}y}dy
Subtract \frac{\mathrm{d}(T)}{\mathrm{d}x}dx from both sides.
df-\frac{\mathrm{d}(T)}{\mathrm{d}x}dx-\frac{\mathrm{d}(f)}{\mathrm{d}y}dy=0
Subtract \frac{\mathrm{d}(f)}{\mathrm{d}y}dy from both sides.
-dx\frac{\mathrm{d}(T)}{\mathrm{d}x}-dy\frac{\mathrm{d}(f)}{\mathrm{d}y}+df=0
Reorder the terms.
\left(-x\frac{\mathrm{d}(T)}{\mathrm{d}x}-y\frac{\mathrm{d}(f)}{\mathrm{d}y}+f\right)d=0
Combine all terms containing d.
fd=0
The equation is in standard form.
d=0
Divide 0 by f.
df-\frac{\mathrm{d}(T)}{\mathrm{d}x}dx=\frac{\mathrm{d}(f)}{\mathrm{d}y}dy
Subtract \frac{\mathrm{d}(T)}{\mathrm{d}x}dx from both sides.
df-\frac{\mathrm{d}(T)}{\mathrm{d}x}dx-\frac{\mathrm{d}(f)}{\mathrm{d}y}dy=0
Subtract \frac{\mathrm{d}(f)}{\mathrm{d}y}dy from both sides.
-dx\frac{\mathrm{d}(T)}{\mathrm{d}x}-dy\frac{\mathrm{d}(f)}{\mathrm{d}y}+df=0
Reorder the terms.
\left(-x\frac{\mathrm{d}(T)}{\mathrm{d}x}-y\frac{\mathrm{d}(f)}{\mathrm{d}y}+f\right)d=0
Combine all terms containing d.
fd=0
The equation is in standard form.
d=0
Divide 0 by f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}