d W _ { 3 } - d W _ { 4 } + d I _ { 4 } = 0
Solve for I_4
\left\{\begin{matrix}\\I_{4}=W_{4}-W_{3}\text{, }&\text{unconditionally}\\I_{4}\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Solve for W_3
\left\{\begin{matrix}\\W_{3}=W_{4}-I_{4}\text{, }&\text{unconditionally}\\W_{3}\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Share
Copied to clipboard
-dW_{4}+dI_{4}=-dW_{3}
Subtract dW_{3} from both sides. Anything subtracted from zero gives its negation.
dI_{4}=-dW_{3}+dW_{4}
Add dW_{4} to both sides.
I_{4}d=-W_{3}d+W_{4}d
Reorder the terms.
dI_{4}=W_{4}d-W_{3}d
The equation is in standard form.
\frac{dI_{4}}{d}=\frac{d\left(W_{4}-W_{3}\right)}{d}
Divide both sides by d.
I_{4}=\frac{d\left(W_{4}-W_{3}\right)}{d}
Dividing by d undoes the multiplication by d.
I_{4}=W_{4}-W_{3}
Divide d\left(-W_{3}+W_{4}\right) by d.
dW_{3}+dI_{4}=dW_{4}
Add dW_{4} to both sides. Anything plus zero gives itself.
dW_{3}=dW_{4}-dI_{4}
Subtract dI_{4} from both sides.
dW_{3}=W_{4}d-I_{4}d
The equation is in standard form.
\frac{dW_{3}}{d}=\frac{d\left(W_{4}-I_{4}\right)}{d}
Divide both sides by d.
W_{3}=\frac{d\left(W_{4}-I_{4}\right)}{d}
Dividing by d undoes the multiplication by d.
W_{3}=W_{4}-I_{4}
Divide d\left(W_{4}-I_{4}\right) by d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}