Solve for d
d=-\frac{5x^{2}-x-12}{\left(x-3\right)^{2}}
x\neq 3
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{6d+\sqrt{241-120d}+1}{2\left(d+5\right)}\text{; }x=\frac{6d-\sqrt{241-120d}+1}{2\left(d+5\right)}\text{, }&d\neq -5\\x=\frac{57}{29}\text{, }&d=-5\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{6d+\sqrt{241-120d}+1}{2\left(d+5\right)}\text{; }x=\frac{6d-\sqrt{241-120d}+1}{2\left(d+5\right)}\text{, }&d\neq -5\text{ and }d\leq \frac{241}{120}\\x=\frac{57}{29}\text{, }&d=-5\end{matrix}\right.
Graph
Share
Copied to clipboard
d\left(x^{2}-6x+9\right)=12+x-5x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
dx^{2}-6dx+9d=12+x-5x^{2}
Use the distributive property to multiply d by x^{2}-6x+9.
\left(x^{2}-6x+9\right)d=12+x-5x^{2}
Combine all terms containing d.
\frac{\left(x^{2}-6x+9\right)d}{x^{2}-6x+9}=\frac{12+x-5x^{2}}{x^{2}-6x+9}
Divide both sides by x^{2}-6x+9.
d=\frac{12+x-5x^{2}}{x^{2}-6x+9}
Dividing by x^{2}-6x+9 undoes the multiplication by x^{2}-6x+9.
d=\frac{12+x-5x^{2}}{\left(x-3\right)^{2}}
Divide 12+x-5x^{2} by x^{2}-6x+9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}