Skip to main content
Solve for d
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

d\left(x^{2}-6x+9\right)=12+x-5x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
dx^{2}-6dx+9d=12+x-5x^{2}
Use the distributive property to multiply d by x^{2}-6x+9.
\left(x^{2}-6x+9\right)d=12+x-5x^{2}
Combine all terms containing d.
\frac{\left(x^{2}-6x+9\right)d}{x^{2}-6x+9}=\frac{12+x-5x^{2}}{x^{2}-6x+9}
Divide both sides by x^{2}-6x+9.
d=\frac{12+x-5x^{2}}{x^{2}-6x+9}
Dividing by x^{2}-6x+9 undoes the multiplication by x^{2}-6x+9.
d=\frac{12+x-5x^{2}}{\left(x-3\right)^{2}}
Divide 12+x-5x^{2} by x^{2}-6x+9.