Solve for d
d=\frac{3+\sqrt{19}i}{7}
d=\frac{-\sqrt{19}i+3}{7}
Solve for b
b\in \mathrm{C}
d=\frac{3+\sqrt{19}i}{7}\text{ or }d=\frac{-\sqrt{19}i+3}{7}
Share
Copied to clipboard
7d^{2}-6d+4=0b
Use the distributive property to multiply d by 7d-6.
7d^{2}-6d+4=0
Anything times zero gives zero.
d=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 7\times 4}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -6 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\left(-6\right)±\sqrt{36-4\times 7\times 4}}{2\times 7}
Square -6.
d=\frac{-\left(-6\right)±\sqrt{36-28\times 4}}{2\times 7}
Multiply -4 times 7.
d=\frac{-\left(-6\right)±\sqrt{36-112}}{2\times 7}
Multiply -28 times 4.
d=\frac{-\left(-6\right)±\sqrt{-76}}{2\times 7}
Add 36 to -112.
d=\frac{-\left(-6\right)±2\sqrt{19}i}{2\times 7}
Take the square root of -76.
d=\frac{6±2\sqrt{19}i}{2\times 7}
The opposite of -6 is 6.
d=\frac{6±2\sqrt{19}i}{14}
Multiply 2 times 7.
d=\frac{6+2\sqrt{19}i}{14}
Now solve the equation d=\frac{6±2\sqrt{19}i}{14} when ± is plus. Add 6 to 2i\sqrt{19}.
d=\frac{3+\sqrt{19}i}{7}
Divide 6+2i\sqrt{19} by 14.
d=\frac{-2\sqrt{19}i+6}{14}
Now solve the equation d=\frac{6±2\sqrt{19}i}{14} when ± is minus. Subtract 2i\sqrt{19} from 6.
d=\frac{-\sqrt{19}i+3}{7}
Divide 6-2i\sqrt{19} by 14.
d=\frac{3+\sqrt{19}i}{7} d=\frac{-\sqrt{19}i+3}{7}
The equation is now solved.
7d^{2}-6d+4=0b
Use the distributive property to multiply d by 7d-6.
7d^{2}-6d+4=0
Anything times zero gives zero.
7d^{2}-6d=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{7d^{2}-6d}{7}=-\frac{4}{7}
Divide both sides by 7.
d^{2}-\frac{6}{7}d=-\frac{4}{7}
Dividing by 7 undoes the multiplication by 7.
d^{2}-\frac{6}{7}d+\left(-\frac{3}{7}\right)^{2}=-\frac{4}{7}+\left(-\frac{3}{7}\right)^{2}
Divide -\frac{6}{7}, the coefficient of the x term, by 2 to get -\frac{3}{7}. Then add the square of -\frac{3}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}-\frac{6}{7}d+\frac{9}{49}=-\frac{4}{7}+\frac{9}{49}
Square -\frac{3}{7} by squaring both the numerator and the denominator of the fraction.
d^{2}-\frac{6}{7}d+\frac{9}{49}=-\frac{19}{49}
Add -\frac{4}{7} to \frac{9}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(d-\frac{3}{7}\right)^{2}=-\frac{19}{49}
Factor d^{2}-\frac{6}{7}d+\frac{9}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d-\frac{3}{7}\right)^{2}}=\sqrt{-\frac{19}{49}}
Take the square root of both sides of the equation.
d-\frac{3}{7}=\frac{\sqrt{19}i}{7} d-\frac{3}{7}=-\frac{\sqrt{19}i}{7}
Simplify.
d=\frac{3+\sqrt{19}i}{7} d=\frac{-\sqrt{19}i+3}{7}
Add \frac{3}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}