d ( 1,41 \times 10 ^ { - 3 } ) = ( 0,25 + d ) ( 1 \times 10 ^ { - 5 } )
Solve for d
d=\frac{1}{560}\approx 0,001785714
Share
Copied to clipboard
d\left(1,41\times \left(\frac{1}{1000}\right)\right)=\left(0,25+d\right)\left(1\times 10^{-5}\right)
Calculate 10 to the power of -3 and get \frac{1}{1000}.
d\left(1,41\times \left(\frac{1}{1000}\right)\right)=\left(0,25+d\right)\left(1\times \left(\frac{1}{100000}\right)\right)
Calculate 10 to the power of -5 and get \frac{1}{100000}.
d\left(1,41\times \left(\frac{1}{1000}\right)\right)=0,25\left(1\times \left(\frac{1}{100000}\right)\right)+d\left(1\times \left(\frac{1}{100000}\right)\right)
Use the distributive property to multiply 0,25+d by 1\times \left(\frac{1}{100000}\right).
d\left(1,41\times \left(\frac{1}{1000}\right)\right)-d\left(1\times \left(\frac{1}{100000}\right)\right)=0,25\left(1\times \left(\frac{1}{100000}\right)\right)
Subtract d\left(1\times \left(\frac{1}{100000}\right)\right) from both sides.
\left(1,41\times \left(\frac{1}{1000}\right)-1\times \left(\frac{1}{100000}\right)\right)d=0,25\left(1\times \left(\frac{1}{100000}\right)\right)
Combine all terms containing d.
\frac{7}{5000}d=\frac{1}{400000}
The equation is in standard form.
\frac{\frac{7}{5000}d}{\frac{7}{5000}}=\frac{\frac{1}{400000}}{\frac{7}{5000}}
Divide both sides of the equation by \frac{7}{5000}, which is the same as multiplying both sides by the reciprocal of the fraction.
d=\frac{\frac{1}{400000}}{\frac{7}{5000}}
Dividing by \frac{7}{5000} undoes the multiplication by \frac{7}{5000}.
d=\frac{1}{560}
Divide \frac{1}{400000} by \frac{7}{5000} by multiplying \frac{1}{400000} by the reciprocal of \frac{7}{5000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}