Skip to main content
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

d\left(1,41\times \left(\frac{1}{1000}\right)\right)=\left(0,25+d\right)\left(1\times 10^{-5}\right)
Calculate 10 to the power of -3 and get \frac{1}{1000}.
d\left(1,41\times \left(\frac{1}{1000}\right)\right)=\left(0,25+d\right)\left(1\times \left(\frac{1}{100000}\right)\right)
Calculate 10 to the power of -5 and get \frac{1}{100000}.
d\left(1,41\times \left(\frac{1}{1000}\right)\right)=0,25\left(1\times \left(\frac{1}{100000}\right)\right)+d\left(1\times \left(\frac{1}{100000}\right)\right)
Use the distributive property to multiply 0,25+d by 1\times \left(\frac{1}{100000}\right).
d\left(1,41\times \left(\frac{1}{1000}\right)\right)-d\left(1\times \left(\frac{1}{100000}\right)\right)=0,25\left(1\times \left(\frac{1}{100000}\right)\right)
Subtract d\left(1\times \left(\frac{1}{100000}\right)\right) from both sides.
\left(1,41\times \left(\frac{1}{1000}\right)-1\times \left(\frac{1}{100000}\right)\right)d=0,25\left(1\times \left(\frac{1}{100000}\right)\right)
Combine all terms containing d.
\frac{7}{5000}d=\frac{1}{400000}
The equation is in standard form.
\frac{\frac{7}{5000}d}{\frac{7}{5000}}=\frac{\frac{1}{400000}}{\frac{7}{5000}}
Divide both sides of the equation by \frac{7}{5000}, which is the same as multiplying both sides by the reciprocal of the fraction.
d=\frac{\frac{1}{400000}}{\frac{7}{5000}}
Dividing by \frac{7}{5000} undoes the multiplication by \frac{7}{5000}.
d=\frac{1}{560}
Divide \frac{1}{400000} by \frac{7}{5000} by multiplying \frac{1}{400000} by the reciprocal of \frac{7}{5000}.