d \theta + N d r = 0
Solve for N
\left\{\begin{matrix}N=-\frac{\theta }{r}\text{, }&r\neq 0\\N\in \mathrm{R}\text{, }&d=0\text{ or }\left(\theta =0\text{ and }r=0\right)\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\theta =-Nr\end{matrix}\right.
Share
Copied to clipboard
Ndr=-d\theta
Subtract d\theta from both sides. Anything subtracted from zero gives its negation.
drN=-d\theta
The equation is in standard form.
\frac{drN}{dr}=-\frac{d\theta }{dr}
Divide both sides by dr.
N=-\frac{d\theta }{dr}
Dividing by dr undoes the multiplication by dr.
N=-\frac{\theta }{r}
Divide -d\theta by dr.
\left(\theta +Nr\right)d=0
Combine all terms containing d.
\left(Nr+\theta \right)d=0
The equation is in standard form.
d=0
Divide 0 by \theta +Nr.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}