d \frac { d y } { d x } \text { if } y = ( \tan ^ { - 1 } x ) ^ { \frac { 1 } { x } } \cdot ( \operatorname { Dec } 2018 )
Solve for D
\left\{\begin{matrix}D=0\text{, }&x\neq 0\\D\in \mathrm{C}\text{, }&x\neq 0\text{ and }c_{2018}=0\end{matrix}\right.
Solve for c_2018
\left\{\begin{matrix}c_{2018}=0\text{, }&x\neq 0\\c_{2018}\in \mathrm{C}\text{, }&x\neq 0\text{ and }D=0\end{matrix}\right.
Share
Copied to clipboard
\left(\arctan(x)\right)^{\frac{1}{x}}Dec_{2018}=d\frac{\mathrm{d}(y)}{\mathrm{d}x}ify
Swap sides so that all variable terms are on the left hand side.
ec_{2018}\left(\arctan(x)\right)^{\frac{1}{x}}D=0
The equation is in standard form.
D=0
Divide 0 by \left(\arctan(x)\right)^{x^{-1}}ec_{2018}.
\left(\arctan(x)\right)^{\frac{1}{x}}Dec_{2018}=d\frac{\mathrm{d}(y)}{\mathrm{d}x}ify
Swap sides so that all variable terms are on the left hand side.
eD\left(\arctan(x)\right)^{\frac{1}{x}}c_{2018}=0
The equation is in standard form.
c_{2018}=0
Divide 0 by \left(\arctan(x)\right)^{x^{-1}}De.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}