Factor
\left(d-c\right)^{2}\left(c+d\right)^{2}
Evaluate
\left(d^{2}-c^{2}\right)^{2}
Share
Copied to clipboard
d^{4}-2c^{2}d^{2}+c^{4}
Consider d^{4}-2d^{2}c^{2}+c^{4} as a polynomial over variable d.
\left(-c^{2}+d^{2}\right)\left(-c^{2}+d^{2}\right)
Find one factor of the form d^{k}+m, where d^{k} divides the monomial with the highest power d^{4} and m divides the constant factor c^{4}. One such factor is -c^{2}+d^{2}. Factor the polynomial by dividing it by this factor.
\left(d-c\right)\left(d+c\right)
Consider -c^{2}+d^{2}. Rewrite -c^{2}+d^{2} as d^{2}-c^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-c+d\right)\left(c+d\right)
Reorder the terms.
\left(d-c\right)\left(d+c\right)
Consider -c^{2}+d^{2}. Rewrite -c^{2}+d^{2} as d^{2}-c^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-c+d\right)\left(c+d\right)
Reorder the terms.
\left(-c+d\right)^{2}\left(c+d\right)^{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}