Skip to main content
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

d^{2}-9d=-19
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d^{2}-9d-\left(-19\right)=-19-\left(-19\right)
Add 19 to both sides of the equation.
d^{2}-9d-\left(-19\right)=0
Subtracting -19 from itself leaves 0.
d^{2}-9d+19=0
Subtract -19 from 0.
d=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 19}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -9 for b, and 19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\left(-9\right)±\sqrt{81-4\times 19}}{2}
Square -9.
d=\frac{-\left(-9\right)±\sqrt{81-76}}{2}
Multiply -4 times 19.
d=\frac{-\left(-9\right)±\sqrt{5}}{2}
Add 81 to -76.
d=\frac{9±\sqrt{5}}{2}
The opposite of -9 is 9.
d=\frac{\sqrt{5}+9}{2}
Now solve the equation d=\frac{9±\sqrt{5}}{2} when ± is plus. Add 9 to \sqrt{5}.
d=\frac{9-\sqrt{5}}{2}
Now solve the equation d=\frac{9±\sqrt{5}}{2} when ± is minus. Subtract \sqrt{5} from 9.
d=\frac{\sqrt{5}+9}{2} d=\frac{9-\sqrt{5}}{2}
The equation is now solved.
d^{2}-9d=-19
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
d^{2}-9d+\left(-\frac{9}{2}\right)^{2}=-19+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}-9d+\frac{81}{4}=-19+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
d^{2}-9d+\frac{81}{4}=\frac{5}{4}
Add -19 to \frac{81}{4}.
\left(d-\frac{9}{2}\right)^{2}=\frac{5}{4}
Factor d^{2}-9d+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d-\frac{9}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
d-\frac{9}{2}=\frac{\sqrt{5}}{2} d-\frac{9}{2}=-\frac{\sqrt{5}}{2}
Simplify.
d=\frac{\sqrt{5}+9}{2} d=\frac{9-\sqrt{5}}{2}
Add \frac{9}{2} to both sides of the equation.