Factor
\left(d-6\right)\left(d-3\right)
Evaluate
\left(d-6\right)\left(d-3\right)
Share
Copied to clipboard
a+b=-9 ab=1\times 18=18
Factor the expression by grouping. First, the expression needs to be rewritten as d^{2}+ad+bd+18. To find a and b, set up a system to be solved.
-1,-18 -2,-9 -3,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 18.
-1-18=-19 -2-9=-11 -3-6=-9
Calculate the sum for each pair.
a=-6 b=-3
The solution is the pair that gives sum -9.
\left(d^{2}-6d\right)+\left(-3d+18\right)
Rewrite d^{2}-9d+18 as \left(d^{2}-6d\right)+\left(-3d+18\right).
d\left(d-6\right)-3\left(d-6\right)
Factor out d in the first and -3 in the second group.
\left(d-6\right)\left(d-3\right)
Factor out common term d-6 by using distributive property.
d^{2}-9d+18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
d=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 18}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-\left(-9\right)±\sqrt{81-4\times 18}}{2}
Square -9.
d=\frac{-\left(-9\right)±\sqrt{81-72}}{2}
Multiply -4 times 18.
d=\frac{-\left(-9\right)±\sqrt{9}}{2}
Add 81 to -72.
d=\frac{-\left(-9\right)±3}{2}
Take the square root of 9.
d=\frac{9±3}{2}
The opposite of -9 is 9.
d=\frac{12}{2}
Now solve the equation d=\frac{9±3}{2} when ± is plus. Add 9 to 3.
d=6
Divide 12 by 2.
d=\frac{6}{2}
Now solve the equation d=\frac{9±3}{2} when ± is minus. Subtract 3 from 9.
d=3
Divide 6 by 2.
d^{2}-9d+18=\left(d-6\right)\left(d-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6 for x_{1} and 3 for x_{2}.
x ^ 2 -9x +18 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 9 rs = 18
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{9}{2} - u s = \frac{9}{2} + u
Two numbers r and s sum up to 9 exactly when the average of the two numbers is \frac{1}{2}*9 = \frac{9}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{9}{2} - u) (\frac{9}{2} + u) = 18
To solve for unknown quantity u, substitute these in the product equation rs = 18
\frac{81}{4} - u^2 = 18
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 18-\frac{81}{4} = -\frac{9}{4}
Simplify the expression by subtracting \frac{81}{4} on both sides
u^2 = \frac{9}{4} u = \pm\sqrt{\frac{9}{4}} = \pm \frac{3}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{9}{2} - \frac{3}{2} = 3 s = \frac{9}{2} + \frac{3}{2} = 6
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}