Solve for d
d=15
d=0
Share
Copied to clipboard
d\left(d-15\right)=0
Factor out d.
d=0 d=15
To find equation solutions, solve d=0 and d-15=0.
d^{2}-15d=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -15 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\left(-15\right)±15}{2}
Take the square root of \left(-15\right)^{2}.
d=\frac{15±15}{2}
The opposite of -15 is 15.
d=\frac{30}{2}
Now solve the equation d=\frac{15±15}{2} when ± is plus. Add 15 to 15.
d=15
Divide 30 by 2.
d=\frac{0}{2}
Now solve the equation d=\frac{15±15}{2} when ± is minus. Subtract 15 from 15.
d=0
Divide 0 by 2.
d=15 d=0
The equation is now solved.
d^{2}-15d=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
d^{2}-15d+\left(-\frac{15}{2}\right)^{2}=\left(-\frac{15}{2}\right)^{2}
Divide -15, the coefficient of the x term, by 2 to get -\frac{15}{2}. Then add the square of -\frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}-15d+\frac{225}{4}=\frac{225}{4}
Square -\frac{15}{2} by squaring both the numerator and the denominator of the fraction.
\left(d-\frac{15}{2}\right)^{2}=\frac{225}{4}
Factor d^{2}-15d+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d-\frac{15}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Take the square root of both sides of the equation.
d-\frac{15}{2}=\frac{15}{2} d-\frac{15}{2}=-\frac{15}{2}
Simplify.
d=15 d=0
Add \frac{15}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}