Skip to main content
Solve for b
Tick mark Image
Solve for d (complex solution)
Tick mark Image
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

d^{2}+\left(-d\right)^{2}+12\left(-d\right)+36=b\left(-d+6-\frac{1}{3}d^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-d+6\right)^{2}.
d^{2}+d^{2}+12\left(-d\right)+36=b\left(-d+6-\frac{1}{3}d^{2}\right)
Calculate -d to the power of 2 and get d^{2}.
2d^{2}+12\left(-d\right)+36=b\left(-d+6-\frac{1}{3}d^{2}\right)
Combine d^{2} and d^{2} to get 2d^{2}.
2d^{2}+12\left(-d\right)+36=b\left(-d\right)+6b-\frac{1}{3}bd^{2}
Use the distributive property to multiply b by -d+6-\frac{1}{3}d^{2}.
b\left(-d\right)+6b-\frac{1}{3}bd^{2}=2d^{2}+12\left(-d\right)+36
Swap sides so that all variable terms are on the left hand side.
b\left(-1\right)d+6b-\frac{1}{3}bd^{2}=2d^{2}-12d+36
Multiply 12 and -1 to get -12.
\left(-d+6-\frac{1}{3}d^{2}\right)b=2d^{2}-12d+36
Combine all terms containing b.
\left(-\frac{d^{2}}{3}-d+6\right)b=2d^{2}-12d+36
The equation is in standard form.
\frac{\left(-\frac{d^{2}}{3}-d+6\right)b}{-\frac{d^{2}}{3}-d+6}=\frac{2d^{2}-12d+36}{-\frac{d^{2}}{3}-d+6}
Divide both sides by -d+6-\frac{1}{3}d^{2}.
b=\frac{2d^{2}-12d+36}{-\frac{d^{2}}{3}-d+6}
Dividing by -d+6-\frac{1}{3}d^{2} undoes the multiplication by -d+6-\frac{1}{3}d^{2}.
b=\frac{6\left(d^{2}-6d+18\right)}{\left(3-d\right)\left(d+6\right)}
Divide 2d^{2}+36-12d by -d+6-\frac{1}{3}d^{2}.