Solve for b
b=-\frac{6\left(d^{2}-6d+18\right)}{\left(d-3\right)\left(d+6\right)}
d\neq -6\text{ and }d\neq 3
Solve for d (complex solution)
\left\{\begin{matrix}d=\frac{3\left(\sqrt{3\left(3b^{2}-8b-48\right)}-b+12\right)}{2\left(b+6\right)}\text{; }d=\frac{3\left(-\sqrt{3\left(3b^{2}-8b-48\right)}-b+12\right)}{2\left(b+6\right)}\text{, }&b\neq -6\\d=4\text{, }&b=-6\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{3\left(\sqrt{3\left(3b^{2}-8b-48\right)}-b+12\right)}{2\left(b+6\right)}\text{; }d=\frac{3\left(-\sqrt{3\left(3b^{2}-8b-48\right)}-b+12\right)}{2\left(b+6\right)}\text{, }&\left(b\neq -6\text{ and }b\leq \frac{4-4\sqrt{10}}{3}\right)\text{ or }b\geq \frac{4\sqrt{10}+4}{3}\\d=4\text{, }&b=-6\end{matrix}\right.
Share
Copied to clipboard
d^{2}+\left(-d\right)^{2}+12\left(-d\right)+36=b\left(-d+6-\frac{1}{3}d^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-d+6\right)^{2}.
d^{2}+d^{2}+12\left(-d\right)+36=b\left(-d+6-\frac{1}{3}d^{2}\right)
Calculate -d to the power of 2 and get d^{2}.
2d^{2}+12\left(-d\right)+36=b\left(-d+6-\frac{1}{3}d^{2}\right)
Combine d^{2} and d^{2} to get 2d^{2}.
2d^{2}+12\left(-d\right)+36=b\left(-d\right)+6b-\frac{1}{3}bd^{2}
Use the distributive property to multiply b by -d+6-\frac{1}{3}d^{2}.
b\left(-d\right)+6b-\frac{1}{3}bd^{2}=2d^{2}+12\left(-d\right)+36
Swap sides so that all variable terms are on the left hand side.
b\left(-1\right)d+6b-\frac{1}{3}bd^{2}=2d^{2}-12d+36
Multiply 12 and -1 to get -12.
\left(-d+6-\frac{1}{3}d^{2}\right)b=2d^{2}-12d+36
Combine all terms containing b.
\left(-\frac{d^{2}}{3}-d+6\right)b=2d^{2}-12d+36
The equation is in standard form.
\frac{\left(-\frac{d^{2}}{3}-d+6\right)b}{-\frac{d^{2}}{3}-d+6}=\frac{2d^{2}-12d+36}{-\frac{d^{2}}{3}-d+6}
Divide both sides by -d+6-\frac{1}{3}d^{2}.
b=\frac{2d^{2}-12d+36}{-\frac{d^{2}}{3}-d+6}
Dividing by -d+6-\frac{1}{3}d^{2} undoes the multiplication by -d+6-\frac{1}{3}d^{2}.
b=\frac{6\left(d^{2}-6d+18\right)}{\left(3-d\right)\left(d+6\right)}
Divide 2d^{2}+36-12d by -d+6-\frac{1}{3}d^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}