Solve for a
\left\{\begin{matrix}a=-\frac{2\left(tv-d\right)}{t^{2}}\text{, }&t\neq 0\\a\in \mathrm{R}\text{, }&d=0\text{ and }t=0\end{matrix}\right.
Solve for d
d=\frac{t\left(at+2v\right)}{2}
Share
Copied to clipboard
d=tv+t\times \frac{at}{2}
Use the distributive property to multiply t by v+\frac{at}{2}.
d=tv+\frac{tat}{2}
Express t\times \frac{at}{2} as a single fraction.
d=tv+\frac{t^{2}a}{2}
Multiply t and t to get t^{2}.
tv+\frac{t^{2}a}{2}=d
Swap sides so that all variable terms are on the left hand side.
\frac{t^{2}a}{2}=d-tv
Subtract tv from both sides.
t^{2}a=2d-2tv
Multiply both sides of the equation by 2.
\frac{t^{2}a}{t^{2}}=\frac{2d-2tv}{t^{2}}
Divide both sides by t^{2}.
a=\frac{2d-2tv}{t^{2}}
Dividing by t^{2} undoes the multiplication by t^{2}.
a=\frac{2\left(d-tv\right)}{t^{2}}
Divide 2d-2tv by t^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}