Solve for c
\left\{\begin{matrix}c=\frac{6x}{6-d}\text{, }&x\neq 0\text{ and }d\neq 6\\c\neq 0\text{, }&x=0\text{ and }d=6\end{matrix}\right.
Solve for d
d=-\frac{6x}{c}+6
c\neq 0
Graph
Share
Copied to clipboard
dc=6\left(c-x\right)
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by c.
dc=6c-6x
Use the distributive property to multiply 6 by c-x.
dc-6c=-6x
Subtract 6c from both sides.
\left(d-6\right)c=-6x
Combine all terms containing c.
\frac{\left(d-6\right)c}{d-6}=-\frac{6x}{d-6}
Divide both sides by d-6.
c=-\frac{6x}{d-6}
Dividing by d-6 undoes the multiplication by d-6.
c=-\frac{6x}{d-6}\text{, }c\neq 0
Variable c cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}