Solve for a
a=\frac{7d}{156}-\frac{4}{39}
Solve for d
d=\frac{156a+16}{7}
Share
Copied to clipboard
d=8\left(-27a+d-2\right)+12a+48a
Combine -3a and -24a to get -27a.
d=-216a+8d-16+12a+48a
Use the distributive property to multiply 8 by -27a+d-2.
d=-204a+8d-16+48a
Combine -216a and 12a to get -204a.
d=-156a+8d-16
Combine -204a and 48a to get -156a.
-156a+8d-16=d
Swap sides so that all variable terms are on the left hand side.
-156a-16=d-8d
Subtract 8d from both sides.
-156a-16=-7d
Combine d and -8d to get -7d.
-156a=-7d+16
Add 16 to both sides.
-156a=16-7d
The equation is in standard form.
\frac{-156a}{-156}=\frac{16-7d}{-156}
Divide both sides by -156.
a=\frac{16-7d}{-156}
Dividing by -156 undoes the multiplication by -156.
a=\frac{7d}{156}-\frac{4}{39}
Divide -7d+16 by -156.
d=8\left(-27a+d-2\right)+12a+48a
Combine -3a and -24a to get -27a.
d=-216a+8d-16+12a+48a
Use the distributive property to multiply 8 by -27a+d-2.
d=-204a+8d-16+48a
Combine -216a and 12a to get -204a.
d=-156a+8d-16
Combine -204a and 48a to get -156a.
d-8d=-156a-16
Subtract 8d from both sides.
-7d=-156a-16
Combine d and -8d to get -7d.
\frac{-7d}{-7}=\frac{-156a-16}{-7}
Divide both sides by -7.
d=\frac{-156a-16}{-7}
Dividing by -7 undoes the multiplication by -7.
d=\frac{156a+16}{7}
Divide -156a-16 by -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}