Solve for c (complex solution)
\left\{\begin{matrix}c=-\frac{-C+3d-3e}{d-e}\text{, }&d\neq e\\c\in \mathrm{C}\text{, }&d=e\text{ and }C=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=-\frac{-C+3d-3e}{d-e}\text{, }&d\neq e\\c\in \mathrm{R}\text{, }&d=e\text{ and }C=0\end{matrix}\right.
Solve for C
C=cd-ec+3d-3e
Share
Copied to clipboard
cd-ce+3d=C+3e
Add 3e to both sides.
cd-ce=C+3e-3d
Subtract 3d from both sides.
cd-ec=C-3d+3e
Reorder the terms.
\left(d-e\right)c=C-3d+3e
Combine all terms containing c.
\frac{\left(d-e\right)c}{d-e}=\frac{C-3d+3e}{d-e}
Divide both sides by d-e.
c=\frac{C-3d+3e}{d-e}
Dividing by d-e undoes the multiplication by d-e.
cd-ce+3d=C+3e
Add 3e to both sides.
cd-ce=C+3e-3d
Subtract 3d from both sides.
cd-ec=C-3d+3e
Reorder the terms.
\left(d-e\right)c=C-3d+3e
Combine all terms containing c.
\frac{\left(d-e\right)c}{d-e}=\frac{C-3d+3e}{d-e}
Divide both sides by d-e.
c=\frac{C-3d+3e}{d-e}
Dividing by d-e undoes the multiplication by d-e.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}