Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{cx+dx-dh}{c}\text{, }&c\neq 0\\a\in \mathrm{C}\text{, }&\left(d=0\text{ or }x=h\right)\text{ and }c=0\end{matrix}\right.
Solve for c (complex solution)
\left\{\begin{matrix}c=-\frac{d\left(x-h\right)}{x-a}\text{, }&x\neq a\\c\in \mathrm{C}\text{, }&\left(d=0\text{ and }x=a\right)\text{ or }\left(x=h\text{ and }a=h\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{cx+dx-dh}{c}\text{, }&c\neq 0\\a\in \mathrm{R}\text{, }&\left(d=0\text{ or }x=h\right)\text{ and }c=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=-\frac{d\left(x-h\right)}{x-a}\text{, }&x\neq a\\c\in \mathrm{R}\text{, }&\left(d=0\text{ and }x=a\right)\text{ or }\left(x=h\text{ and }a=h\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
cx-ca+d\left(x-h\right)=0
Use the distributive property to multiply c by x-a.
cx-ca+dx-dh=0
Use the distributive property to multiply d by x-h.
-ca+dx-dh=-cx
Subtract cx from both sides. Anything subtracted from zero gives its negation.
-ca-dh=-cx-dx
Subtract dx from both sides.
-ca=-cx-dx+dh
Add dh to both sides.
-ac=-cx-dx+dh
Reorder the terms.
\left(-c\right)a=dh-dx-cx
The equation is in standard form.
\frac{\left(-c\right)a}{-c}=\frac{dh-dx-cx}{-c}
Divide both sides by -c.
a=\frac{dh-dx-cx}{-c}
Dividing by -c undoes the multiplication by -c.
a=\frac{dx-dh}{c}+x
Divide -xc-dx+dh by -c.
cx-ca+d\left(x-h\right)=0
Use the distributive property to multiply c by x-a.
cx-ca+dx-dh=0
Use the distributive property to multiply d by x-h.
cx-ca-dh=-dx
Subtract dx from both sides. Anything subtracted from zero gives its negation.
cx-ca=-dx+dh
Add dh to both sides.
cx-ac=-dx+dh
Reorder the terms.
\left(x-a\right)c=-dx+dh
Combine all terms containing c.
\left(x-a\right)c=dh-dx
The equation is in standard form.
\frac{\left(x-a\right)c}{x-a}=\frac{d\left(h-x\right)}{x-a}
Divide both sides by x-a.
c=\frac{d\left(h-x\right)}{x-a}
Dividing by x-a undoes the multiplication by x-a.
cx-ca+d\left(x-h\right)=0
Use the distributive property to multiply c by x-a.
cx-ca+dx-dh=0
Use the distributive property to multiply d by x-h.
-ca+dx-dh=-cx
Subtract cx from both sides. Anything subtracted from zero gives its negation.
-ca-dh=-cx-dx
Subtract dx from both sides.
-ca=-cx-dx+dh
Add dh to both sides.
-ac=-cx-dx+dh
Reorder the terms.
\left(-c\right)a=dh-dx-cx
The equation is in standard form.
\frac{\left(-c\right)a}{-c}=\frac{dh-dx-cx}{-c}
Divide both sides by -c.
a=\frac{dh-dx-cx}{-c}
Dividing by -c undoes the multiplication by -c.
a=\frac{dx-dh}{c}+x
Divide -cx-dx+dh by -c.
cx-ca+d\left(x-h\right)=0
Use the distributive property to multiply c by x-a.
cx-ca+dx-dh=0
Use the distributive property to multiply d by x-h.
cx-ca-dh=-dx
Subtract dx from both sides. Anything subtracted from zero gives its negation.
cx-ca=-dx+dh
Add dh to both sides.
cx-ac=-dx+dh
Reorder the terms.
\left(x-a\right)c=-dx+dh
Combine all terms containing c.
\left(x-a\right)c=dh-dx
The equation is in standard form.
\frac{\left(x-a\right)c}{x-a}=\frac{d\left(h-x\right)}{x-a}
Divide both sides by x-a.
c=\frac{d\left(h-x\right)}{x-a}
Dividing by x-a undoes the multiplication by x-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}