Solve for c
c=-\frac{1-x}{x-2}
x\neq 2
Solve for x
x=-\frac{1-2c}{c-1}
c\neq 1
Graph
Share
Copied to clipboard
5cx-2c\times 5+1-2x=2+3\left(x-2\right)
Use the distributive property to multiply c\times 5 by x-2.
5cx-10c+1-2x=2+3\left(x-2\right)
Multiply -2 and 5 to get -10.
5cx-10c+1-2x=2+3x-6
Use the distributive property to multiply 3 by x-2.
5cx-10c+1-2x=-4+3x
Subtract 6 from 2 to get -4.
5cx-10c-2x=-4+3x-1
Subtract 1 from both sides.
5cx-10c-2x=-5+3x
Subtract 1 from -4 to get -5.
5cx-10c=-5+3x+2x
Add 2x to both sides.
5cx-10c=-5+5x
Combine 3x and 2x to get 5x.
\left(5x-10\right)c=-5+5x
Combine all terms containing c.
\left(5x-10\right)c=5x-5
The equation is in standard form.
\frac{\left(5x-10\right)c}{5x-10}=\frac{5x-5}{5x-10}
Divide both sides by 5x-10.
c=\frac{5x-5}{5x-10}
Dividing by 5x-10 undoes the multiplication by 5x-10.
c=\frac{x-1}{x-2}
Divide -5+5x by 5x-10.
5cx-2c\times 5+1-2x=2+3\left(x-2\right)
Use the distributive property to multiply c\times 5 by x-2.
5cx-10c+1-2x=2+3\left(x-2\right)
Multiply -2 and 5 to get -10.
5cx-10c+1-2x=2+3x-6
Use the distributive property to multiply 3 by x-2.
5cx-10c+1-2x=-4+3x
Subtract 6 from 2 to get -4.
5cx-10c+1-2x-3x=-4
Subtract 3x from both sides.
5cx-10c+1-5x=-4
Combine -2x and -3x to get -5x.
5cx+1-5x=-4+10c
Add 10c to both sides.
5cx-5x=-4+10c-1
Subtract 1 from both sides.
5cx-5x=-5+10c
Subtract 1 from -4 to get -5.
\left(5c-5\right)x=-5+10c
Combine all terms containing x.
\left(5c-5\right)x=10c-5
The equation is in standard form.
\frac{\left(5c-5\right)x}{5c-5}=\frac{10c-5}{5c-5}
Divide both sides by 5c-5.
x=\frac{10c-5}{5c-5}
Dividing by 5c-5 undoes the multiplication by 5c-5.
x=\frac{2c-1}{c-1}
Divide -5+10c by 5c-5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}