c \cdot ( - \frac { 5 } { 6 } ) \div ( - \frac { 1 } { 4 }
Evaluate
\frac{10c}{3}
Differentiate w.r.t. c
\frac{10}{3} = 3\frac{1}{3} = 3.3333333333333335
Share
Copied to clipboard
\frac{c\left(-\frac{5}{6}\right)\times 4}{-1}
Divide c\left(-\frac{5}{6}\right) by -\frac{1}{4} by multiplying c\left(-\frac{5}{6}\right) by the reciprocal of -\frac{1}{4}.
\frac{c\times \frac{-5\times 4}{6}}{-1}
Express -\frac{5}{6}\times 4 as a single fraction.
\frac{c\times \frac{-20}{6}}{-1}
Multiply -5 and 4 to get -20.
\frac{c\left(-\frac{10}{3}\right)}{-1}
Reduce the fraction \frac{-20}{6} to lowest terms by extracting and canceling out 2.
-c\left(-\frac{10}{3}\right)
Anything divided by -1 gives its opposite.
\frac{10}{3}c
Multiply -1 and -\frac{10}{3} to get \frac{10}{3}.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{c\left(-\frac{5}{6}\right)\times 4}{-1})
Divide c\left(-\frac{5}{6}\right) by -\frac{1}{4} by multiplying c\left(-\frac{5}{6}\right) by the reciprocal of -\frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{c\times \frac{-5\times 4}{6}}{-1})
Express -\frac{5}{6}\times 4 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{c\times \frac{-20}{6}}{-1})
Multiply -5 and 4 to get -20.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{c\left(-\frac{10}{3}\right)}{-1})
Reduce the fraction \frac{-20}{6} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}c}(-c\left(-\frac{10}{3}\right))
Anything divided by -1 gives its opposite.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{10}{3}c)
Multiply -1 and -\frac{10}{3} to get \frac{10}{3}.
\frac{10}{3}c^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{10}{3}c^{0}
Subtract 1 from 1.
\frac{10}{3}\times 1
For any term t except 0, t^{0}=1.
\frac{10}{3}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}