Evaluate
\frac{c}{3}+\frac{2}{9}
Factor
\frac{3c+2}{9}
Quiz
Polynomial
c \cdot \frac { 1 } { 3 } + \frac { 2 } { 9 } - \frac { 6 } { 5 } + \frac { 12 } { 10 } =
Share
Copied to clipboard
c\times \frac{1}{3}+\frac{10}{45}-\frac{54}{45}+\frac{12}{10}
Least common multiple of 9 and 5 is 45. Convert \frac{2}{9} and \frac{6}{5} to fractions with denominator 45.
c\times \frac{1}{3}+\frac{10-54}{45}+\frac{12}{10}
Since \frac{10}{45} and \frac{54}{45} have the same denominator, subtract them by subtracting their numerators.
c\times \frac{1}{3}-\frac{44}{45}+\frac{12}{10}
Subtract 54 from 10 to get -44.
c\times \frac{1}{3}-\frac{44}{45}+\frac{6}{5}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
c\times \frac{1}{3}-\frac{44}{45}+\frac{54}{45}
Least common multiple of 45 and 5 is 45. Convert -\frac{44}{45} and \frac{6}{5} to fractions with denominator 45.
c\times \frac{1}{3}+\frac{-44+54}{45}
Since -\frac{44}{45} and \frac{54}{45} have the same denominator, add them by adding their numerators.
c\times \frac{1}{3}+\frac{10}{45}
Add -44 and 54 to get 10.
c\times \frac{1}{3}+\frac{2}{9}
Reduce the fraction \frac{10}{45} to lowest terms by extracting and canceling out 5.
\frac{15c+10}{45}
Factor out \frac{1}{45}.
15c+10
Consider 15c+10-54+54. Multiply and combine like terms.
5\left(3c+2\right)
Consider 15c+10. Factor out 5.
\frac{3c+2}{9}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}