Factor
c\left(c-8\right)\left(c+5\right)
Evaluate
c\left(c-8\right)\left(c+5\right)
Share
Copied to clipboard
c\left(c^{2}-3c-40\right)
Factor out c.
a+b=-3 ab=1\left(-40\right)=-40
Consider c^{2}-3c-40. Factor the expression by grouping. First, the expression needs to be rewritten as c^{2}+ac+bc-40. To find a and b, set up a system to be solved.
1,-40 2,-20 4,-10 5,-8
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -40.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
Calculate the sum for each pair.
a=-8 b=5
The solution is the pair that gives sum -3.
\left(c^{2}-8c\right)+\left(5c-40\right)
Rewrite c^{2}-3c-40 as \left(c^{2}-8c\right)+\left(5c-40\right).
c\left(c-8\right)+5\left(c-8\right)
Factor out c in the first and 5 in the second group.
\left(c-8\right)\left(c+5\right)
Factor out common term c-8 by using distributive property.
c\left(c-8\right)\left(c+5\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}