Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

c^{2}\left(d^{2}-16\right)-4\left(d^{2}-16\right)
Do the grouping c^{2}d^{2}-16c^{2}-4d^{2}+64=\left(c^{2}d^{2}-16c^{2}\right)+\left(-4d^{2}+64\right), and factor out c^{2} in the first and -4 in the second group.
\left(d^{2}-16\right)\left(c^{2}-4\right)
Factor out common term d^{2}-16 by using distributive property.
\left(d-4\right)\left(d+4\right)
Consider d^{2}-16. Rewrite d^{2}-16 as d^{2}-4^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(c-2\right)\left(c+2\right)
Consider c^{2}-4. Rewrite c^{2}-4 as c^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(d-4\right)\left(c-2\right)\left(c+2\right)\left(d+4\right)
Rewrite the complete factored expression.