Solve for c
c = \frac{40 \sqrt{3}}{3} \approx 23.094010768
c = -\frac{40 \sqrt{3}}{3} \approx -23.094010768
Share
Copied to clipboard
4c^{2}-c^{2}=1600
Multiply both sides of the equation by 4.
3c^{2}=1600
Combine 4c^{2} and -c^{2} to get 3c^{2}.
c^{2}=\frac{1600}{3}
Divide both sides by 3.
c=\frac{40\sqrt{3}}{3} c=-\frac{40\sqrt{3}}{3}
Take the square root of both sides of the equation.
4c^{2}-c^{2}=1600
Multiply both sides of the equation by 4.
4c^{2}-c^{2}-1600=0
Subtract 1600 from both sides.
3c^{2}-1600=0
Combine 4c^{2} and -c^{2} to get 3c^{2}.
c=\frac{0±\sqrt{0^{2}-4\times 3\left(-1600\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -1600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\times 3\left(-1600\right)}}{2\times 3}
Square 0.
c=\frac{0±\sqrt{-12\left(-1600\right)}}{2\times 3}
Multiply -4 times 3.
c=\frac{0±\sqrt{19200}}{2\times 3}
Multiply -12 times -1600.
c=\frac{0±80\sqrt{3}}{2\times 3}
Take the square root of 19200.
c=\frac{0±80\sqrt{3}}{6}
Multiply 2 times 3.
c=\frac{40\sqrt{3}}{3}
Now solve the equation c=\frac{0±80\sqrt{3}}{6} when ± is plus.
c=-\frac{40\sqrt{3}}{3}
Now solve the equation c=\frac{0±80\sqrt{3}}{6} when ± is minus.
c=\frac{40\sqrt{3}}{3} c=-\frac{40\sqrt{3}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}