Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

a+b=8 ab=15
To solve the equation, factor c^{2}+8c+15 using formula c^{2}+\left(a+b\right)c+ab=\left(c+a\right)\left(c+b\right). To find a and b, set up a system to be solved.
1,15 3,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 15.
1+15=16 3+5=8
Calculate the sum for each pair.
a=3 b=5
The solution is the pair that gives sum 8.
\left(c+3\right)\left(c+5\right)
Rewrite factored expression \left(c+a\right)\left(c+b\right) using the obtained values.
c=-3 c=-5
To find equation solutions, solve c+3=0 and c+5=0.
a+b=8 ab=1\times 15=15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as c^{2}+ac+bc+15. To find a and b, set up a system to be solved.
1,15 3,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 15.
1+15=16 3+5=8
Calculate the sum for each pair.
a=3 b=5
The solution is the pair that gives sum 8.
\left(c^{2}+3c\right)+\left(5c+15\right)
Rewrite c^{2}+8c+15 as \left(c^{2}+3c\right)+\left(5c+15\right).
c\left(c+3\right)+5\left(c+3\right)
Factor out c in the first and 5 in the second group.
\left(c+3\right)\left(c+5\right)
Factor out common term c+3 by using distributive property.
c=-3 c=-5
To find equation solutions, solve c+3=0 and c+5=0.
c^{2}+8c+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-8±\sqrt{8^{2}-4\times 15}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-8±\sqrt{64-4\times 15}}{2}
Square 8.
c=\frac{-8±\sqrt{64-60}}{2}
Multiply -4 times 15.
c=\frac{-8±\sqrt{4}}{2}
Add 64 to -60.
c=\frac{-8±2}{2}
Take the square root of 4.
c=-\frac{6}{2}
Now solve the equation c=\frac{-8±2}{2} when ± is plus. Add -8 to 2.
c=-3
Divide -6 by 2.
c=-\frac{10}{2}
Now solve the equation c=\frac{-8±2}{2} when ± is minus. Subtract 2 from -8.
c=-5
Divide -10 by 2.
c=-3 c=-5
The equation is now solved.
c^{2}+8c+15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
c^{2}+8c+15-15=-15
Subtract 15 from both sides of the equation.
c^{2}+8c=-15
Subtracting 15 from itself leaves 0.
c^{2}+8c+4^{2}=-15+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+8c+16=-15+16
Square 4.
c^{2}+8c+16=1
Add -15 to 16.
\left(c+4\right)^{2}=1
Factor c^{2}+8c+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+4\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
c+4=1 c+4=-1
Simplify.
c=-3 c=-5
Subtract 4 from both sides of the equation.
x ^ 2 +8x +15 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -8 rs = 15
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -4 - u s = -4 + u
Two numbers r and s sum up to -8 exactly when the average of the two numbers is \frac{1}{2}*-8 = -4. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-4 - u) (-4 + u) = 15
To solve for unknown quantity u, substitute these in the product equation rs = 15
16 - u^2 = 15
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 15-16 = -1
Simplify the expression by subtracting 16 on both sides
u^2 = 1 u = \pm\sqrt{1} = \pm 1
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-4 - 1 = -5 s = -4 + 1 = -3
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.