Solve for c (complex solution)
c=\sqrt{15}-2\approx 1.872983346
c=-\left(\sqrt{15}+2\right)\approx -5.872983346
Solve for c
c=\sqrt{15}-2\approx 1.872983346
c=-\sqrt{15}-2\approx -5.872983346
Share
Copied to clipboard
c^{2}+4c-17=-6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c^{2}+4c-17-\left(-6\right)=-6-\left(-6\right)
Add 6 to both sides of the equation.
c^{2}+4c-17-\left(-6\right)=0
Subtracting -6 from itself leaves 0.
c^{2}+4c-11=0
Subtract -6 from -17.
c=\frac{-4±\sqrt{4^{2}-4\left(-11\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-4±\sqrt{16-4\left(-11\right)}}{2}
Square 4.
c=\frac{-4±\sqrt{16+44}}{2}
Multiply -4 times -11.
c=\frac{-4±\sqrt{60}}{2}
Add 16 to 44.
c=\frac{-4±2\sqrt{15}}{2}
Take the square root of 60.
c=\frac{2\sqrt{15}-4}{2}
Now solve the equation c=\frac{-4±2\sqrt{15}}{2} when ± is plus. Add -4 to 2\sqrt{15}.
c=\sqrt{15}-2
Divide -4+2\sqrt{15} by 2.
c=\frac{-2\sqrt{15}-4}{2}
Now solve the equation c=\frac{-4±2\sqrt{15}}{2} when ± is minus. Subtract 2\sqrt{15} from -4.
c=-\sqrt{15}-2
Divide -4-2\sqrt{15} by 2.
c=\sqrt{15}-2 c=-\sqrt{15}-2
The equation is now solved.
c^{2}+4c-17=-6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
c^{2}+4c-17-\left(-17\right)=-6-\left(-17\right)
Add 17 to both sides of the equation.
c^{2}+4c=-6-\left(-17\right)
Subtracting -17 from itself leaves 0.
c^{2}+4c=11
Subtract -17 from -6.
c^{2}+4c+2^{2}=11+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+4c+4=11+4
Square 2.
c^{2}+4c+4=15
Add 11 to 4.
\left(c+2\right)^{2}=15
Factor c^{2}+4c+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+2\right)^{2}}=\sqrt{15}
Take the square root of both sides of the equation.
c+2=\sqrt{15} c+2=-\sqrt{15}
Simplify.
c=\sqrt{15}-2 c=-\sqrt{15}-2
Subtract 2 from both sides of the equation.
c^{2}+4c-17=-6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c^{2}+4c-17-\left(-6\right)=-6-\left(-6\right)
Add 6 to both sides of the equation.
c^{2}+4c-17-\left(-6\right)=0
Subtracting -6 from itself leaves 0.
c^{2}+4c-11=0
Subtract -6 from -17.
c=\frac{-4±\sqrt{4^{2}-4\left(-11\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-4±\sqrt{16-4\left(-11\right)}}{2}
Square 4.
c=\frac{-4±\sqrt{16+44}}{2}
Multiply -4 times -11.
c=\frac{-4±\sqrt{60}}{2}
Add 16 to 44.
c=\frac{-4±2\sqrt{15}}{2}
Take the square root of 60.
c=\frac{2\sqrt{15}-4}{2}
Now solve the equation c=\frac{-4±2\sqrt{15}}{2} when ± is plus. Add -4 to 2\sqrt{15}.
c=\sqrt{15}-2
Divide -4+2\sqrt{15} by 2.
c=\frac{-2\sqrt{15}-4}{2}
Now solve the equation c=\frac{-4±2\sqrt{15}}{2} when ± is minus. Subtract 2\sqrt{15} from -4.
c=-\sqrt{15}-2
Divide -4-2\sqrt{15} by 2.
c=\sqrt{15}-2 c=-\sqrt{15}-2
The equation is now solved.
c^{2}+4c-17=-6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
c^{2}+4c-17-\left(-17\right)=-6-\left(-17\right)
Add 17 to both sides of the equation.
c^{2}+4c=-6-\left(-17\right)
Subtracting -17 from itself leaves 0.
c^{2}+4c=11
Subtract -17 from -6.
c^{2}+4c+2^{2}=11+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+4c+4=11+4
Square 2.
c^{2}+4c+4=15
Add 11 to 4.
\left(c+2\right)^{2}=15
Factor c^{2}+4c+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+2\right)^{2}}=\sqrt{15}
Take the square root of both sides of the equation.
c+2=\sqrt{15} c+2=-\sqrt{15}
Simplify.
c=\sqrt{15}-2 c=-\sqrt{15}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}