Solve for k (complex solution)
\left\{\begin{matrix}k=-\frac{4+c^{2}-x}{x}\text{, }&x\neq 0\\k\in \mathrm{C}\text{, }&\left(c=2i\text{ or }c=-2i\right)\text{ and }x=0\end{matrix}\right.
Solve for k
k=-\frac{4+c^{2}-x}{x}
x\neq 0
Solve for c (complex solution)
c=-\sqrt{-kx+x-4}
c=\sqrt{-kx+x-4}
Solve for c
c=\sqrt{-kx+x-4}
c=-\sqrt{-kx+x-4}\text{, }\left(x>0\text{ or }k\geq \frac{x-4}{x}\right)\text{ and }\left(x<0\text{ or }k\leq \frac{x-4}{x}\right)\text{ and }x\neq 0
Graph
Share
Copied to clipboard
c^{2}+kx-x+4=0
Use the distributive property to multiply k-1 by x.
kx-x+4=-c^{2}
Subtract c^{2} from both sides. Anything subtracted from zero gives its negation.
kx+4=-c^{2}+x
Add x to both sides.
kx=-c^{2}+x-4
Subtract 4 from both sides.
xk=x-c^{2}-4
The equation is in standard form.
\frac{xk}{x}=\frac{x-c^{2}-4}{x}
Divide both sides by x.
k=\frac{x-c^{2}-4}{x}
Dividing by x undoes the multiplication by x.
c^{2}+kx-x+4=0
Use the distributive property to multiply k-1 by x.
kx-x+4=-c^{2}
Subtract c^{2} from both sides. Anything subtracted from zero gives its negation.
kx+4=-c^{2}+x
Add x to both sides.
kx=-c^{2}+x-4
Subtract 4 from both sides.
xk=x-c^{2}-4
The equation is in standard form.
\frac{xk}{x}=\frac{x-c^{2}-4}{x}
Divide both sides by x.
k=\frac{x-c^{2}-4}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}