Solve for g
\left\{\begin{matrix}g=-\frac{2p+\rho v^{2}-2c}{2h\rho }\text{, }&h\neq 0\text{ and }\rho \neq 0\\g\in \mathrm{R}\text{, }&\left(c=\frac{\rho v^{2}}{2}+p\text{ and }h=0\right)\text{ or }\left(c=p\text{ and }\rho =0\text{ and }h\neq 0\right)\end{matrix}\right.
Solve for c
c=\frac{\rho v^{2}}{2}+gh\rho +p
Share
Copied to clipboard
p+\frac{1}{2}\rho v^{2}+\rho gh=c
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}\rho v^{2}+\rho gh=c-p
Subtract p from both sides.
\rho gh=c-p-\frac{1}{2}\rho v^{2}
Subtract \frac{1}{2}\rho v^{2} from both sides.
h\rho g=-\frac{\rho v^{2}}{2}+c-p
The equation is in standard form.
\frac{h\rho g}{h\rho }=\frac{-\frac{\rho v^{2}}{2}+c-p}{h\rho }
Divide both sides by \rho h.
g=\frac{-\frac{\rho v^{2}}{2}+c-p}{h\rho }
Dividing by \rho h undoes the multiplication by \rho h.
g=\frac{2c-\rho v^{2}-2p}{2h\rho }
Divide c-p-\frac{v^{2}\rho }{2} by \rho h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}