Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

c-33=\frac{5c^{2}}{4}+19c
Subtract 33 from both sides.
c-33-\frac{5c^{2}}{4}=19c
Subtract \frac{5c^{2}}{4} from both sides.
c-33-\frac{5c^{2}}{4}-19c=0
Subtract 19c from both sides.
-18c-33-\frac{5c^{2}}{4}=0
Combine c and -19c to get -18c.
-72c-132-5c^{2}=0
Multiply both sides of the equation by 4.
-5c^{2}-72c-132=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\left(-5\right)\left(-132\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -72 for b, and -132 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\left(-72\right)±\sqrt{5184-4\left(-5\right)\left(-132\right)}}{2\left(-5\right)}
Square -72.
c=\frac{-\left(-72\right)±\sqrt{5184+20\left(-132\right)}}{2\left(-5\right)}
Multiply -4 times -5.
c=\frac{-\left(-72\right)±\sqrt{5184-2640}}{2\left(-5\right)}
Multiply 20 times -132.
c=\frac{-\left(-72\right)±\sqrt{2544}}{2\left(-5\right)}
Add 5184 to -2640.
c=\frac{-\left(-72\right)±4\sqrt{159}}{2\left(-5\right)}
Take the square root of 2544.
c=\frac{72±4\sqrt{159}}{2\left(-5\right)}
The opposite of -72 is 72.
c=\frac{72±4\sqrt{159}}{-10}
Multiply 2 times -5.
c=\frac{4\sqrt{159}+72}{-10}
Now solve the equation c=\frac{72±4\sqrt{159}}{-10} when ± is plus. Add 72 to 4\sqrt{159}.
c=\frac{-2\sqrt{159}-36}{5}
Divide 72+4\sqrt{159} by -10.
c=\frac{72-4\sqrt{159}}{-10}
Now solve the equation c=\frac{72±4\sqrt{159}}{-10} when ± is minus. Subtract 4\sqrt{159} from 72.
c=\frac{2\sqrt{159}-36}{5}
Divide 72-4\sqrt{159} by -10.
c=\frac{-2\sqrt{159}-36}{5} c=\frac{2\sqrt{159}-36}{5}
The equation is now solved.
c-\frac{5c^{2}}{4}=33+19c
Subtract \frac{5c^{2}}{4} from both sides.
c-\frac{5c^{2}}{4}-19c=33
Subtract 19c from both sides.
-18c-\frac{5c^{2}}{4}=33
Combine c and -19c to get -18c.
-72c-5c^{2}=132
Multiply both sides of the equation by 4.
-5c^{2}-72c=132
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5c^{2}-72c}{-5}=\frac{132}{-5}
Divide both sides by -5.
c^{2}+\left(-\frac{72}{-5}\right)c=\frac{132}{-5}
Dividing by -5 undoes the multiplication by -5.
c^{2}+\frac{72}{5}c=\frac{132}{-5}
Divide -72 by -5.
c^{2}+\frac{72}{5}c=-\frac{132}{5}
Divide 132 by -5.
c^{2}+\frac{72}{5}c+\left(\frac{36}{5}\right)^{2}=-\frac{132}{5}+\left(\frac{36}{5}\right)^{2}
Divide \frac{72}{5}, the coefficient of the x term, by 2 to get \frac{36}{5}. Then add the square of \frac{36}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+\frac{72}{5}c+\frac{1296}{25}=-\frac{132}{5}+\frac{1296}{25}
Square \frac{36}{5} by squaring both the numerator and the denominator of the fraction.
c^{2}+\frac{72}{5}c+\frac{1296}{25}=\frac{636}{25}
Add -\frac{132}{5} to \frac{1296}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(c+\frac{36}{5}\right)^{2}=\frac{636}{25}
Factor c^{2}+\frac{72}{5}c+\frac{1296}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+\frac{36}{5}\right)^{2}}=\sqrt{\frac{636}{25}}
Take the square root of both sides of the equation.
c+\frac{36}{5}=\frac{2\sqrt{159}}{5} c+\frac{36}{5}=-\frac{2\sqrt{159}}{5}
Simplify.
c=\frac{2\sqrt{159}-36}{5} c=\frac{-2\sqrt{159}-36}{5}
Subtract \frac{36}{5} from both sides of the equation.