Solve for c
c=\frac{7x^{3}}{4}+\frac{5m^{2}}{4}+\frac{x^{2}}{2}+\frac{m}{2}-\frac{15x}{4}-\frac{5}{2}
Solve for m
m=\frac{\sqrt{51+20c+75x-10x^{2}-35x^{3}}-1}{5}
m=\frac{-\sqrt{51+20c+75x-10x^{2}-35x^{3}}-1}{5}\text{, }c\geq \frac{7x^{3}}{4}+\frac{x^{2}}{2}-\frac{15x}{4}-\frac{51}{20}
Graph
Share
Copied to clipboard
c=2m+5m^{2}-3c+2x^{2}-15x-10+7x^{3}
Subtract 19 from 9 to get -10.
c+3c=2m+5m^{2}+2x^{2}-15x-10+7x^{3}
Add 3c to both sides.
4c=2m+5m^{2}+2x^{2}-15x-10+7x^{3}
Combine c and 3c to get 4c.
4c=7x^{3}+2x^{2}-15x+5m^{2}+2m-10
The equation is in standard form.
\frac{4c}{4}=\frac{7x^{3}+2x^{2}-15x+5m^{2}+2m-10}{4}
Divide both sides by 4.
c=\frac{7x^{3}+2x^{2}-15x+5m^{2}+2m-10}{4}
Dividing by 4 undoes the multiplication by 4.
c=\frac{7x^{3}}{4}+\frac{5m^{2}}{4}+\frac{x^{2}}{2}+\frac{m}{2}-\frac{15x}{4}-\frac{5}{2}
Divide 2m+5m^{2}+2x^{2}-15x-10+7x^{3} by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}