Skip to main content
Solve for c
Tick mark Image
Assign c
Tick mark Image

Similar Problems from Web Search

Share

c=\frac{\left(-3+2i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator of \frac{-3+2i}{2-i} by the complex conjugate of the denominator, 2+i.
c=\frac{\left(-3+2i\right)\left(2+i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
c=\frac{\left(-3+2i\right)\left(2+i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
c=\frac{-3\times 2-3i+2i\times 2+2i^{2}}{5}
Multiply complex numbers -3+2i and 2+i like you multiply binomials.
c=\frac{-3\times 2-3i+2i\times 2+2\left(-1\right)}{5}
By definition, i^{2} is -1.
c=\frac{-6-3i+4i-2}{5}
Do the multiplications in -3\times 2-3i+2i\times 2+2\left(-1\right).
c=\frac{-6-2+\left(-3+4\right)i}{5}
Combine the real and imaginary parts in -6-3i+4i-2.
c=\frac{-8+i}{5}
Do the additions in -6-2+\left(-3+4\right)i.
c=-\frac{8}{5}+\frac{1}{5}i
Divide -8+i by 5 to get -\frac{8}{5}+\frac{1}{5}i.