Solve for a
a=\frac{17c}{735}-\frac{833b}{375}
Solve for b
b=\frac{25c}{2401}-\frac{375a}{833}
Share
Copied to clipboard
c=\frac{2401}{25}b+\frac{7^{2}\times 10a}{34}\times 3
Calculate \frac{49}{5} to the power of 2 and get \frac{2401}{25}.
c=\frac{2401}{25}b+\frac{49\times 10a}{34}\times 3
Calculate 7 to the power of 2 and get 49.
c=\frac{2401}{25}b+\frac{490a}{34}\times 3
Multiply 49 and 10 to get 490.
c=\frac{2401}{25}b+\frac{245}{17}a\times 3
Divide 490a by 34 to get \frac{245}{17}a.
c=\frac{2401}{25}b+\frac{735}{17}a
Multiply \frac{245}{17} and 3 to get \frac{735}{17}.
\frac{2401}{25}b+\frac{735}{17}a=c
Swap sides so that all variable terms are on the left hand side.
\frac{735}{17}a=c-\frac{2401}{25}b
Subtract \frac{2401}{25}b from both sides.
\frac{735}{17}a=-\frac{2401b}{25}+c
The equation is in standard form.
\frac{\frac{735}{17}a}{\frac{735}{17}}=\frac{-\frac{2401b}{25}+c}{\frac{735}{17}}
Divide both sides of the equation by \frac{735}{17}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{-\frac{2401b}{25}+c}{\frac{735}{17}}
Dividing by \frac{735}{17} undoes the multiplication by \frac{735}{17}.
a=\frac{17c}{735}-\frac{833b}{375}
Divide c-\frac{2401b}{25} by \frac{735}{17} by multiplying c-\frac{2401b}{25} by the reciprocal of \frac{735}{17}.
c=\frac{2401}{25}b+\frac{7^{2}\times 10a}{34}\times 3
Calculate \frac{49}{5} to the power of 2 and get \frac{2401}{25}.
c=\frac{2401}{25}b+\frac{49\times 10a}{34}\times 3
Calculate 7 to the power of 2 and get 49.
c=\frac{2401}{25}b+\frac{490a}{34}\times 3
Multiply 49 and 10 to get 490.
c=\frac{2401}{25}b+\frac{245}{17}a\times 3
Divide 490a by 34 to get \frac{245}{17}a.
c=\frac{2401}{25}b+\frac{735}{17}a
Multiply \frac{245}{17} and 3 to get \frac{735}{17}.
\frac{2401}{25}b+\frac{735}{17}a=c
Swap sides so that all variable terms are on the left hand side.
\frac{2401}{25}b=c-\frac{735}{17}a
Subtract \frac{735}{17}a from both sides.
\frac{2401}{25}b=-\frac{735a}{17}+c
The equation is in standard form.
\frac{\frac{2401}{25}b}{\frac{2401}{25}}=\frac{-\frac{735a}{17}+c}{\frac{2401}{25}}
Divide both sides of the equation by \frac{2401}{25}, which is the same as multiplying both sides by the reciprocal of the fraction.
b=\frac{-\frac{735a}{17}+c}{\frac{2401}{25}}
Dividing by \frac{2401}{25} undoes the multiplication by \frac{2401}{25}.
b=\frac{25c}{2401}-\frac{375a}{833}
Divide c-\frac{735a}{17} by \frac{2401}{25} by multiplying c-\frac{735a}{17} by the reciprocal of \frac{2401}{25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}