Solve for m
m=-\frac{9c}{4100}+\frac{816}{1025}
Solve for c
c=-\frac{4100m}{9}+\frac{1088}{3}
Share
Copied to clipboard
c=\frac{1088}{3}-\frac{4100}{9}m
Divide each term of 3264-4100m by 9 to get \frac{1088}{3}-\frac{4100}{9}m.
\frac{1088}{3}-\frac{4100}{9}m=c
Swap sides so that all variable terms are on the left hand side.
-\frac{4100}{9}m=c-\frac{1088}{3}
Subtract \frac{1088}{3} from both sides.
\frac{-\frac{4100}{9}m}{-\frac{4100}{9}}=\frac{c-\frac{1088}{3}}{-\frac{4100}{9}}
Divide both sides of the equation by -\frac{4100}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
m=\frac{c-\frac{1088}{3}}{-\frac{4100}{9}}
Dividing by -\frac{4100}{9} undoes the multiplication by -\frac{4100}{9}.
m=-\frac{9c}{4100}+\frac{816}{1025}
Divide c-\frac{1088}{3} by -\frac{4100}{9} by multiplying c-\frac{1088}{3} by the reciprocal of -\frac{4100}{9}.
c=\frac{1088}{3}-\frac{4100}{9}m
Divide each term of 3264-4100m by 9 to get \frac{1088}{3}-\frac{4100}{9}m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}