Solve for b
b=\frac{5}{6s\left(s+31\right)}
s\neq -31\text{ and }s\neq 0
Solve for s (complex solution)
s=\frac{\sqrt{8649b^{2}+30b}}{6b}-\frac{31}{2}
s=-\frac{\sqrt{8649b^{2}+30b}}{6b}-\frac{31}{2}\text{, }b\neq 0
Solve for s
s=\frac{\sqrt{8649b^{2}+30b}}{6b}-\frac{31}{2}
s=-\frac{\sqrt{8649b^{2}+30b}}{6b}-\frac{31}{2}\text{, }b>0\text{ or }b\leq -\frac{10}{2883}
Share
Copied to clipboard
bs\times 6\left(s+31\right)=5
Multiply both sides of the equation by 6\left(s+31\right).
6bs^{2}+31bs\times 6=5
Use the distributive property to multiply bs\times 6 by s+31.
6bs^{2}+186bs=5
Multiply 31 and 6 to get 186.
\left(6s^{2}+186s\right)b=5
Combine all terms containing b.
\frac{\left(6s^{2}+186s\right)b}{6s^{2}+186s}=\frac{5}{6s^{2}+186s}
Divide both sides by 6s^{2}+186s.
b=\frac{5}{6s^{2}+186s}
Dividing by 6s^{2}+186s undoes the multiplication by 6s^{2}+186s.
b=\frac{5}{6s\left(s+31\right)}
Divide 5 by 6s^{2}+186s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}