Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

b\left(1-81b^{4}\right)
Factor out b.
\left(1-9b^{2}\right)\left(1+9b^{2}\right)
Consider 1-81b^{4}. Rewrite 1-81b^{4} as 1^{2}-\left(9b^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(-9b^{2}+1\right)\left(9b^{2}+1\right)
Reorder the terms.
\left(1-3b\right)\left(1+3b\right)
Consider -9b^{2}+1. Rewrite -9b^{2}+1 as 1^{2}-\left(3b\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(-3b+1\right)\left(3b+1\right)
Reorder the terms.
b\left(-3b+1\right)\left(3b+1\right)\left(9b^{2}+1\right)
Rewrite the complete factored expression. Polynomial 9b^{2}+1 is not factored since it does not have any rational roots.