Evaluate
b+3
Differentiate w.r.t. b
1
Quiz
Polynomial
5 problems similar to:
b - ( - 1 ) ^ { 8 } - 3 \cdot ( - 1 ) ^ { 5 } + ( - 1 ) ^ { 16 } =
Share
Copied to clipboard
b-1-3\left(-1\right)^{5}+\left(-1\right)^{16}
Calculate -1 to the power of 8 and get 1.
b-1-3\left(-1\right)+\left(-1\right)^{16}
Calculate -1 to the power of 5 and get -1.
b-1-\left(-3\right)+\left(-1\right)^{16}
Multiply 3 and -1 to get -3.
b-1+3+\left(-1\right)^{16}
The opposite of -3 is 3.
b+2+\left(-1\right)^{16}
Add -1 and 3 to get 2.
b+2+1
Calculate -1 to the power of 16 and get 1.
b+3
Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}b}(b-1-3\left(-1\right)^{5}+\left(-1\right)^{16})
Calculate -1 to the power of 8 and get 1.
\frac{\mathrm{d}}{\mathrm{d}b}(b-1-3\left(-1\right)+\left(-1\right)^{16})
Calculate -1 to the power of 5 and get -1.
\frac{\mathrm{d}}{\mathrm{d}b}(b-1-\left(-3\right)+\left(-1\right)^{16})
Multiply 3 and -1 to get -3.
\frac{\mathrm{d}}{\mathrm{d}b}(b-1+3+\left(-1\right)^{16})
The opposite of -3 is 3.
\frac{\mathrm{d}}{\mathrm{d}b}(b+2+\left(-1\right)^{16})
Add -1 and 3 to get 2.
\frac{\mathrm{d}}{\mathrm{d}b}(b+2+1)
Calculate -1 to the power of 16 and get 1.
\frac{\mathrm{d}}{\mathrm{d}b}(b+3)
Add 2 and 1 to get 3.
b^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
b^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}