Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

bb-2=2b
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
b^{2}-2=2b
Multiply b and b to get b^{2}.
b^{2}-2-2b=0
Subtract 2b from both sides.
b^{2}-2b-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
Square -2.
b=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
Multiply -4 times -2.
b=\frac{-\left(-2\right)±\sqrt{12}}{2}
Add 4 to 8.
b=\frac{-\left(-2\right)±2\sqrt{3}}{2}
Take the square root of 12.
b=\frac{2±2\sqrt{3}}{2}
The opposite of -2 is 2.
b=\frac{2\sqrt{3}+2}{2}
Now solve the equation b=\frac{2±2\sqrt{3}}{2} when ± is plus. Add 2 to 2\sqrt{3}.
b=\sqrt{3}+1
Divide 2+2\sqrt{3} by 2.
b=\frac{2-2\sqrt{3}}{2}
Now solve the equation b=\frac{2±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from 2.
b=1-\sqrt{3}
Divide 2-2\sqrt{3} by 2.
b=\sqrt{3}+1 b=1-\sqrt{3}
The equation is now solved.
bb-2=2b
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
b^{2}-2=2b
Multiply b and b to get b^{2}.
b^{2}-2-2b=0
Subtract 2b from both sides.
b^{2}-2b=2
Add 2 to both sides. Anything plus zero gives itself.
b^{2}-2b+1=2+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-2b+1=3
Add 2 to 1.
\left(b-1\right)^{2}=3
Factor b^{2}-2b+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-1\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
b-1=\sqrt{3} b-1=-\sqrt{3}
Simplify.
b=\sqrt{3}+1 b=1-\sqrt{3}
Add 1 to both sides of the equation.