Solve for a
a=\frac{81b}{16}
Solve for b
b=\frac{16a}{81}
Share
Copied to clipboard
b\times \frac{243}{32}-8\times \left(\frac{3}{2}\right)^{2}-a\times \frac{3}{2}+8=-10
Calculate \frac{3}{2} to the power of 5 and get \frac{243}{32}.
b\times \frac{243}{32}-8\times \frac{9}{4}-a\times \frac{3}{2}+8=-10
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
b\times \frac{243}{32}-18-a\times \frac{3}{2}+8=-10
Multiply 8 and \frac{9}{4} to get 18.
b\times \frac{243}{32}-18-a\times \frac{3}{2}=-10-8
Subtract 8 from both sides.
b\times \frac{243}{32}-18-a\times \frac{3}{2}=-18
Subtract 8 from -10 to get -18.
b\times \frac{243}{32}-18-\frac{3}{2}a=-18
Multiply -1 and \frac{3}{2} to get -\frac{3}{2}.
-18-\frac{3}{2}a=-18-b\times \frac{243}{32}
Subtract b\times \frac{243}{32} from both sides.
-\frac{3}{2}a=-18-b\times \frac{243}{32}+18
Add 18 to both sides.
-\frac{3}{2}a=-\frac{243b}{32}
The equation is in standard form.
\frac{-\frac{3}{2}a}{-\frac{3}{2}}=-\frac{\frac{243b}{32}}{-\frac{3}{2}}
Divide both sides of the equation by -\frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=-\frac{\frac{243b}{32}}{-\frac{3}{2}}
Dividing by -\frac{3}{2} undoes the multiplication by -\frac{3}{2}.
a=\frac{81b}{16}
Divide -\frac{243b}{32} by -\frac{3}{2} by multiplying -\frac{243b}{32} by the reciprocal of -\frac{3}{2}.
b\times \frac{243}{32}-8\times \left(\frac{3}{2}\right)^{2}-a\times \frac{3}{2}+8=-10
Calculate \frac{3}{2} to the power of 5 and get \frac{243}{32}.
b\times \frac{243}{32}-8\times \frac{9}{4}-a\times \frac{3}{2}+8=-10
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
b\times \frac{243}{32}-18-a\times \frac{3}{2}+8=-10
Multiply 8 and \frac{9}{4} to get 18.
b\times \frac{243}{32}-18-a\times \frac{3}{2}=-10-8
Subtract 8 from both sides.
b\times \frac{243}{32}-18-a\times \frac{3}{2}=-18
Subtract 8 from -10 to get -18.
b\times \frac{243}{32}-18=-18+a\times \frac{3}{2}
Add a\times \frac{3}{2} to both sides.
b\times \frac{243}{32}=-18+a\times \frac{3}{2}+18
Add 18 to both sides.
b\times \frac{243}{32}=a\times \frac{3}{2}
Add -18 and 18 to get 0.
\frac{243}{32}b=\frac{3a}{2}
The equation is in standard form.
\frac{\frac{243}{32}b}{\frac{243}{32}}=\frac{3a}{2\times \frac{243}{32}}
Divide both sides of the equation by \frac{243}{32}, which is the same as multiplying both sides by the reciprocal of the fraction.
b=\frac{3a}{2\times \frac{243}{32}}
Dividing by \frac{243}{32} undoes the multiplication by \frac{243}{32}.
b=\frac{16a}{81}
Divide \frac{3a}{2} by \frac{243}{32} by multiplying \frac{3a}{2} by the reciprocal of \frac{243}{32}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}