Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-a^{2}\left(-a+b\right)+b^{2}\left(-a+b\right)
Do the grouping b^{3}+a^{3}-ab^{2}-a^{2}b=\left(a^{3}-a^{2}b\right)+\left(-ab^{2}+b^{3}\right), and factor out -a^{2} in the first and b^{2} in the second group.
\left(-a+b\right)\left(-a^{2}+b^{2}\right)
Factor out common term -a+b by using distributive property.
\left(b-a\right)\left(b+a\right)
Consider -a^{2}+b^{2}. Rewrite -a^{2}+b^{2} as b^{2}-a^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(-a+b\right)\left(a+b\right)
Reorder the terms.
\left(a+b\right)\left(-a+b\right)^{2}
Rewrite the complete factored expression.