Solve for a (complex solution)
\left\{\begin{matrix}\\a=-bx\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&c=bx\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=-bx\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&c=bx\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b\in \mathrm{C}\text{, }&\left(c=0\text{ or }a=0\right)\text{ and }x=0\\b=\frac{c}{x}\text{; }b=-\frac{a}{x}\text{, }&x\neq 0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b\in \mathrm{R}\text{, }&\left(c=0\text{ or }a=0\right)\text{ and }x=0\\b=\frac{c}{x}\text{; }b=-\frac{a}{x}\text{, }&x\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
b^{2}x^{2}+\left(ba-bc\right)x-ac=0
Use the distributive property to multiply b by a-c.
b^{2}x^{2}+bax-bcx-ac=0
Use the distributive property to multiply ba-bc by x.
bax-bcx-ac=-b^{2}x^{2}
Subtract b^{2}x^{2} from both sides. Anything subtracted from zero gives its negation.
bax-ac=-b^{2}x^{2}+bcx
Add bcx to both sides.
abx-ac=-b^{2}x^{2}+bcx
Reorder the terms.
\left(bx-c\right)a=-b^{2}x^{2}+bcx
Combine all terms containing a.
\left(bx-c\right)a=bcx-b^{2}x^{2}
The equation is in standard form.
\frac{\left(bx-c\right)a}{bx-c}=\frac{bx\left(c-bx\right)}{bx-c}
Divide both sides by bx-c.
a=\frac{bx\left(c-bx\right)}{bx-c}
Dividing by bx-c undoes the multiplication by bx-c.
a=-bx
Divide bx\left(-bx+c\right) by bx-c.
b^{2}x^{2}+\left(ba-bc\right)x-ac=0
Use the distributive property to multiply b by a-c.
b^{2}x^{2}+bax-bcx-ac=0
Use the distributive property to multiply ba-bc by x.
bax-bcx-ac=-b^{2}x^{2}
Subtract b^{2}x^{2} from both sides. Anything subtracted from zero gives its negation.
bax-ac=-b^{2}x^{2}+bcx
Add bcx to both sides.
abx-ac=-b^{2}x^{2}+bcx
Reorder the terms.
\left(bx-c\right)a=-b^{2}x^{2}+bcx
Combine all terms containing a.
\left(bx-c\right)a=bcx-b^{2}x^{2}
The equation is in standard form.
\frac{\left(bx-c\right)a}{bx-c}=\frac{bx\left(c-bx\right)}{bx-c}
Divide both sides by bx-c.
a=\frac{bx\left(c-bx\right)}{bx-c}
Dividing by bx-c undoes the multiplication by bx-c.
a=-bx
Divide bx\left(-bx+c\right) by bx-c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}