Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

b^{2}-3b-9=20
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b^{2}-3b-9-20=20-20
Subtract 20 from both sides of the equation.
b^{2}-3b-9-20=0
Subtracting 20 from itself leaves 0.
b^{2}-3b-29=0
Subtract 20 from -9.
b=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-29\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and -29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-3\right)±\sqrt{9-4\left(-29\right)}}{2}
Square -3.
b=\frac{-\left(-3\right)±\sqrt{9+116}}{2}
Multiply -4 times -29.
b=\frac{-\left(-3\right)±\sqrt{125}}{2}
Add 9 to 116.
b=\frac{-\left(-3\right)±5\sqrt{5}}{2}
Take the square root of 125.
b=\frac{3±5\sqrt{5}}{2}
The opposite of -3 is 3.
b=\frac{5\sqrt{5}+3}{2}
Now solve the equation b=\frac{3±5\sqrt{5}}{2} when ± is plus. Add 3 to 5\sqrt{5}.
b=\frac{3-5\sqrt{5}}{2}
Now solve the equation b=\frac{3±5\sqrt{5}}{2} when ± is minus. Subtract 5\sqrt{5} from 3.
b=\frac{5\sqrt{5}+3}{2} b=\frac{3-5\sqrt{5}}{2}
The equation is now solved.
b^{2}-3b-9=20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
b^{2}-3b-9-\left(-9\right)=20-\left(-9\right)
Add 9 to both sides of the equation.
b^{2}-3b=20-\left(-9\right)
Subtracting -9 from itself leaves 0.
b^{2}-3b=29
Subtract -9 from 20.
b^{2}-3b+\left(-\frac{3}{2}\right)^{2}=29+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-3b+\frac{9}{4}=29+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
b^{2}-3b+\frac{9}{4}=\frac{125}{4}
Add 29 to \frac{9}{4}.
\left(b-\frac{3}{2}\right)^{2}=\frac{125}{4}
Factor b^{2}-3b+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{3}{2}\right)^{2}}=\sqrt{\frac{125}{4}}
Take the square root of both sides of the equation.
b-\frac{3}{2}=\frac{5\sqrt{5}}{2} b-\frac{3}{2}=-\frac{5\sqrt{5}}{2}
Simplify.
b=\frac{5\sqrt{5}+3}{2} b=\frac{3-5\sqrt{5}}{2}
Add \frac{3}{2} to both sides of the equation.