Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{b+3}{b-3}\text{, }&b\neq 3\\x\in \mathrm{C}\text{, }&b=-2\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{b+3}{b-3}\text{, }&b\neq 3\\x\in \mathrm{R}\text{, }&b=-2\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=-2\text{, }&\text{unconditionally}\\b=\frac{3\left(x+1\right)}{x-1}\text{, }&x\neq 1\end{matrix}\right.
Graph
Share
Copied to clipboard
b^{2}x-b^{2}-b\left(x+5\right)-6\left(x+1\right)=0
Use the distributive property to multiply b^{2} by x-1.
b^{2}x-b^{2}-\left(bx+5b\right)-6\left(x+1\right)=0
Use the distributive property to multiply b by x+5.
b^{2}x-b^{2}-bx-5b-6\left(x+1\right)=0
To find the opposite of bx+5b, find the opposite of each term.
b^{2}x-b^{2}-bx-5b-6x-6=0
Use the distributive property to multiply -6 by x+1.
b^{2}x-bx-5b-6x-6=b^{2}
Add b^{2} to both sides. Anything plus zero gives itself.
b^{2}x-bx-6x-6=b^{2}+5b
Add 5b to both sides.
b^{2}x-bx-6x=b^{2}+5b+6
Add 6 to both sides.
\left(b^{2}-b-6\right)x=b^{2}+5b+6
Combine all terms containing x.
\frac{\left(b^{2}-b-6\right)x}{b^{2}-b-6}=\frac{\left(b+2\right)\left(b+3\right)}{b^{2}-b-6}
Divide both sides by b^{2}-b-6.
x=\frac{\left(b+2\right)\left(b+3\right)}{b^{2}-b-6}
Dividing by b^{2}-b-6 undoes the multiplication by b^{2}-b-6.
x=\frac{b+3}{b-3}
Divide \left(2+b\right)\left(3+b\right) by b^{2}-b-6.
b^{2}x-b^{2}-b\left(x+5\right)-6\left(x+1\right)=0
Use the distributive property to multiply b^{2} by x-1.
b^{2}x-b^{2}-\left(bx+5b\right)-6\left(x+1\right)=0
Use the distributive property to multiply b by x+5.
b^{2}x-b^{2}-bx-5b-6\left(x+1\right)=0
To find the opposite of bx+5b, find the opposite of each term.
b^{2}x-b^{2}-bx-5b-6x-6=0
Use the distributive property to multiply -6 by x+1.
b^{2}x-bx-5b-6x-6=b^{2}
Add b^{2} to both sides. Anything plus zero gives itself.
b^{2}x-bx-6x-6=b^{2}+5b
Add 5b to both sides.
b^{2}x-bx-6x=b^{2}+5b+6
Add 6 to both sides.
\left(b^{2}-b-6\right)x=b^{2}+5b+6
Combine all terms containing x.
\frac{\left(b^{2}-b-6\right)x}{b^{2}-b-6}=\frac{\left(b+2\right)\left(b+3\right)}{b^{2}-b-6}
Divide both sides by b^{2}-b-6.
x=\frac{\left(b+2\right)\left(b+3\right)}{b^{2}-b-6}
Dividing by b^{2}-b-6 undoes the multiplication by b^{2}-b-6.
x=\frac{b+3}{b-3}
Divide \left(2+b\right)\left(3+b\right) by b^{2}-b-6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}