Solve for b
b=-\sqrt{15}i\approx -0-3.872983346i
b=\sqrt{15}i\approx 3.872983346i
Quiz
Complex Number
5 problems similar to:
b ^ { 2 } = ( \sqrt { 5 } ) ^ { 2 } - ( 2 \sqrt { 5 } ) ^ { 2 }
Share
Copied to clipboard
b^{2}=5-\left(2\sqrt{5}\right)^{2}
The square of \sqrt{5} is 5.
b^{2}=5-2^{2}\left(\sqrt{5}\right)^{2}
Expand \left(2\sqrt{5}\right)^{2}.
b^{2}=5-4\left(\sqrt{5}\right)^{2}
Calculate 2 to the power of 2 and get 4.
b^{2}=5-4\times 5
The square of \sqrt{5} is 5.
b^{2}=5-20
Multiply 4 and 5 to get 20.
b^{2}=-15
Subtract 20 from 5 to get -15.
b=\sqrt{15}i b=-\sqrt{15}i
The equation is now solved.
b^{2}=5-\left(2\sqrt{5}\right)^{2}
The square of \sqrt{5} is 5.
b^{2}=5-2^{2}\left(\sqrt{5}\right)^{2}
Expand \left(2\sqrt{5}\right)^{2}.
b^{2}=5-4\left(\sqrt{5}\right)^{2}
Calculate 2 to the power of 2 and get 4.
b^{2}=5-4\times 5
The square of \sqrt{5} is 5.
b^{2}=5-20
Multiply 4 and 5 to get 20.
b^{2}=-15
Subtract 20 from 5 to get -15.
b^{2}+15=0
Add 15 to both sides.
b=\frac{0±\sqrt{0^{2}-4\times 15}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times 15}}{2}
Square 0.
b=\frac{0±\sqrt{-60}}{2}
Multiply -4 times 15.
b=\frac{0±2\sqrt{15}i}{2}
Take the square root of -60.
b=\sqrt{15}i
Now solve the equation b=\frac{0±2\sqrt{15}i}{2} when ± is plus.
b=-\sqrt{15}i
Now solve the equation b=\frac{0±2\sqrt{15}i}{2} when ± is minus.
b=\sqrt{15}i b=-\sqrt{15}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}