Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

b^{2}=5-\left(2\sqrt{5}\right)^{2}
The square of \sqrt{5} is 5.
b^{2}=5-2^{2}\left(\sqrt{5}\right)^{2}
Expand \left(2\sqrt{5}\right)^{2}.
b^{2}=5-4\left(\sqrt{5}\right)^{2}
Calculate 2 to the power of 2 and get 4.
b^{2}=5-4\times 5
The square of \sqrt{5} is 5.
b^{2}=5-20
Multiply 4 and 5 to get 20.
b^{2}=-15
Subtract 20 from 5 to get -15.
b=\sqrt{15}i b=-\sqrt{15}i
The equation is now solved.
b^{2}=5-\left(2\sqrt{5}\right)^{2}
The square of \sqrt{5} is 5.
b^{2}=5-2^{2}\left(\sqrt{5}\right)^{2}
Expand \left(2\sqrt{5}\right)^{2}.
b^{2}=5-4\left(\sqrt{5}\right)^{2}
Calculate 2 to the power of 2 and get 4.
b^{2}=5-4\times 5
The square of \sqrt{5} is 5.
b^{2}=5-20
Multiply 4 and 5 to get 20.
b^{2}=-15
Subtract 20 from 5 to get -15.
b^{2}+15=0
Add 15 to both sides.
b=\frac{0±\sqrt{0^{2}-4\times 15}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times 15}}{2}
Square 0.
b=\frac{0±\sqrt{-60}}{2}
Multiply -4 times 15.
b=\frac{0±2\sqrt{15}i}{2}
Take the square root of -60.
b=\sqrt{15}i
Now solve the equation b=\frac{0±2\sqrt{15}i}{2} when ± is plus.
b=-\sqrt{15}i
Now solve the equation b=\frac{0±2\sqrt{15}i}{2} when ± is minus.
b=\sqrt{15}i b=-\sqrt{15}i
The equation is now solved.