Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

b^{2}+b+\frac{1}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{4}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and \frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-1±\sqrt{1-4\times \frac{1}{4}}}{2}
Square 1.
b=\frac{-1±\sqrt{1-1}}{2}
Multiply -4 times \frac{1}{4}.
b=\frac{-1±\sqrt{0}}{2}
Add 1 to -1.
b=-\frac{1}{2}
Take the square root of 0.
\left(b+\frac{1}{2}\right)^{2}=0
Factor b^{2}+b+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b+\frac{1}{2}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
b+\frac{1}{2}=0 b+\frac{1}{2}=0
Simplify.
b=-\frac{1}{2} b=-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
b=-\frac{1}{2}
The equation is now solved. Solutions are the same.