Solve for b
b = \frac{\sqrt{42}}{6} \approx 1.08012345
b = -\frac{\sqrt{42}}{6} \approx -1.08012345
Share
Copied to clipboard
b^{2}-1=\frac{1}{6}
Subtract 5 from 4 to get -1.
b^{2}=\frac{1}{6}+1
Add 1 to both sides.
b^{2}=\frac{7}{6}
Add \frac{1}{6} and 1 to get \frac{7}{6}.
b=\frac{\sqrt{42}}{6} b=-\frac{\sqrt{42}}{6}
Take the square root of both sides of the equation.
b^{2}-1=\frac{1}{6}
Subtract 5 from 4 to get -1.
b^{2}-1-\frac{1}{6}=0
Subtract \frac{1}{6} from both sides.
b^{2}-\frac{7}{6}=0
Subtract \frac{1}{6} from -1 to get -\frac{7}{6}.
b=\frac{0±\sqrt{0^{2}-4\left(-\frac{7}{6}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{7}{6} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\left(-\frac{7}{6}\right)}}{2}
Square 0.
b=\frac{0±\sqrt{\frac{14}{3}}}{2}
Multiply -4 times -\frac{7}{6}.
b=\frac{0±\frac{\sqrt{42}}{3}}{2}
Take the square root of \frac{14}{3}.
b=\frac{\sqrt{42}}{6}
Now solve the equation b=\frac{0±\frac{\sqrt{42}}{3}}{2} when ± is plus.
b=-\frac{\sqrt{42}}{6}
Now solve the equation b=\frac{0±\frac{\sqrt{42}}{3}}{2} when ± is minus.
b=\frac{\sqrt{42}}{6} b=-\frac{\sqrt{42}}{6}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}