Solve for b
b=-20
b=0
Share
Copied to clipboard
b\left(b+15+5\right)=0
Factor out b.
b=0 b=-20
To find equation solutions, solve b=0 and b+20=0.
b^{2}+20b=0
Combine 15b and 5b to get 20b.
b=\frac{-20±\sqrt{20^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 20 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-20±20}{2}
Take the square root of 20^{2}.
b=\frac{0}{2}
Now solve the equation b=\frac{-20±20}{2} when ± is plus. Add -20 to 20.
b=0
Divide 0 by 2.
b=-\frac{40}{2}
Now solve the equation b=\frac{-20±20}{2} when ± is minus. Subtract 20 from -20.
b=-20
Divide -40 by 2.
b=0 b=-20
The equation is now solved.
b^{2}+20b=0
Combine 15b and 5b to get 20b.
b^{2}+20b+10^{2}=10^{2}
Divide 20, the coefficient of the x term, by 2 to get 10. Then add the square of 10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}+20b+100=100
Square 10.
\left(b+10\right)^{2}=100
Factor b^{2}+20b+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b+10\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
b+10=10 b+10=-10
Simplify.
b=0 b=-20
Subtract 10 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}