Solve for b
b=6+2\sqrt{6}i\approx 6+4.898979486i
b=-2\sqrt{6}i+6\approx 6-4.898979486i
Share
Copied to clipboard
b^{2}+60-12b=0
Use the distributive property to multiply 12 by 5-b.
b^{2}-12b+60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 60}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -12 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-12\right)±\sqrt{144-4\times 60}}{2}
Square -12.
b=\frac{-\left(-12\right)±\sqrt{144-240}}{2}
Multiply -4 times 60.
b=\frac{-\left(-12\right)±\sqrt{-96}}{2}
Add 144 to -240.
b=\frac{-\left(-12\right)±4\sqrt{6}i}{2}
Take the square root of -96.
b=\frac{12±4\sqrt{6}i}{2}
The opposite of -12 is 12.
b=\frac{12+4\sqrt{6}i}{2}
Now solve the equation b=\frac{12±4\sqrt{6}i}{2} when ± is plus. Add 12 to 4i\sqrt{6}.
b=6+2\sqrt{6}i
Divide 12+4i\sqrt{6} by 2.
b=\frac{-4\sqrt{6}i+12}{2}
Now solve the equation b=\frac{12±4\sqrt{6}i}{2} when ± is minus. Subtract 4i\sqrt{6} from 12.
b=-2\sqrt{6}i+6
Divide 12-4i\sqrt{6} by 2.
b=6+2\sqrt{6}i b=-2\sqrt{6}i+6
The equation is now solved.
b^{2}+60-12b=0
Use the distributive property to multiply 12 by 5-b.
b^{2}-12b=-60
Subtract 60 from both sides. Anything subtracted from zero gives its negation.
b^{2}-12b+\left(-6\right)^{2}=-60+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-12b+36=-60+36
Square -6.
b^{2}-12b+36=-24
Add -60 to 36.
\left(b-6\right)^{2}=-24
Factor b^{2}-12b+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-6\right)^{2}}=\sqrt{-24}
Take the square root of both sides of the equation.
b-6=2\sqrt{6}i b-6=-2\sqrt{6}i
Simplify.
b=6+2\sqrt{6}i b=-2\sqrt{6}i+6
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}