Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

3b^{2}+8b-27=0
Multiply both sides of the equation by 3.
b=\frac{-8±\sqrt{8^{2}-4\times 3\left(-27\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 8 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-8±\sqrt{64-4\times 3\left(-27\right)}}{2\times 3}
Square 8.
b=\frac{-8±\sqrt{64-12\left(-27\right)}}{2\times 3}
Multiply -4 times 3.
b=\frac{-8±\sqrt{64+324}}{2\times 3}
Multiply -12 times -27.
b=\frac{-8±\sqrt{388}}{2\times 3}
Add 64 to 324.
b=\frac{-8±2\sqrt{97}}{2\times 3}
Take the square root of 388.
b=\frac{-8±2\sqrt{97}}{6}
Multiply 2 times 3.
b=\frac{2\sqrt{97}-8}{6}
Now solve the equation b=\frac{-8±2\sqrt{97}}{6} when ± is plus. Add -8 to 2\sqrt{97}.
b=\frac{\sqrt{97}-4}{3}
Divide -8+2\sqrt{97} by 6.
b=\frac{-2\sqrt{97}-8}{6}
Now solve the equation b=\frac{-8±2\sqrt{97}}{6} when ± is minus. Subtract 2\sqrt{97} from -8.
b=\frac{-\sqrt{97}-4}{3}
Divide -8-2\sqrt{97} by 6.
b=\frac{\sqrt{97}-4}{3} b=\frac{-\sqrt{97}-4}{3}
The equation is now solved.
3b^{2}+8b-27=0
Multiply both sides of the equation by 3.
3b^{2}+8b=27
Add 27 to both sides. Anything plus zero gives itself.
\frac{3b^{2}+8b}{3}=\frac{27}{3}
Divide both sides by 3.
b^{2}+\frac{8}{3}b=\frac{27}{3}
Dividing by 3 undoes the multiplication by 3.
b^{2}+\frac{8}{3}b=9
Divide 27 by 3.
b^{2}+\frac{8}{3}b+\left(\frac{4}{3}\right)^{2}=9+\left(\frac{4}{3}\right)^{2}
Divide \frac{8}{3}, the coefficient of the x term, by 2 to get \frac{4}{3}. Then add the square of \frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}+\frac{8}{3}b+\frac{16}{9}=9+\frac{16}{9}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
b^{2}+\frac{8}{3}b+\frac{16}{9}=\frac{97}{9}
Add 9 to \frac{16}{9}.
\left(b+\frac{4}{3}\right)^{2}=\frac{97}{9}
Factor b^{2}+\frac{8}{3}b+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b+\frac{4}{3}\right)^{2}}=\sqrt{\frac{97}{9}}
Take the square root of both sides of the equation.
b+\frac{4}{3}=\frac{\sqrt{97}}{3} b+\frac{4}{3}=-\frac{\sqrt{97}}{3}
Simplify.
b=\frac{\sqrt{97}-4}{3} b=\frac{-\sqrt{97}-4}{3}
Subtract \frac{4}{3} from both sides of the equation.