Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{b}{p}+100\text{, }&p\neq 0\\a\in \mathrm{C}\text{, }&b=0\text{ and }p=0\end{matrix}\right.
Solve for b (complex solution)
b=-p\left(a-100\right)
Solve for a
\left\{\begin{matrix}a=-\frac{b}{p}+100\text{, }&\left(b\leq 0\text{ and }p<0\right)\text{ or }\left(b\geq 0\text{ and }p>0\right)\\a\leq 100\text{, }&b=0\text{ and }p=0\end{matrix}\right.
Solve for b
b=-p\left(a-100\right)
a\leq 100
Share
Copied to clipboard
b=\sqrt{100-a}p\sqrt{-a+100}
Combine 2\sqrt{-a+100} and -\sqrt{-a+100} to get \sqrt{-a+100}.
\sqrt{100-a}p\sqrt{-a+100}=b
Swap sides so that all variable terms are on the left hand side.
\left(\sqrt{100-a}\right)^{2}p=b
Multiply \sqrt{100-a} and \sqrt{-a+100} to get \left(\sqrt{100-a}\right)^{2}.
\left(100-a\right)p=b
Calculate \sqrt{100-a} to the power of 2 and get 100-a.
100p-ap=b
Use the distributive property to multiply 100-a by p.
-ap=b-100p
Subtract 100p from both sides.
\left(-p\right)a=b-100p
The equation is in standard form.
\frac{\left(-p\right)a}{-p}=\frac{b-100p}{-p}
Divide both sides by -p.
a=\frac{b-100p}{-p}
Dividing by -p undoes the multiplication by -p.
a=-\frac{b}{p}+100
Divide b-100p by -p.
b=\sqrt{100-a}p\sqrt{-a+100}
Combine 2\sqrt{-a+100} and -\sqrt{-a+100} to get \sqrt{-a+100}.
b=\left(\sqrt{100-a}\right)^{2}p
Multiply \sqrt{100-a} and \sqrt{-a+100} to get \left(\sqrt{100-a}\right)^{2}.
b=\left(100-a\right)p
Calculate \sqrt{100-a} to the power of 2 and get 100-a.
b=100p-ap
Use the distributive property to multiply 100-a by p.
b=\sqrt{100-a}p\sqrt{-a+100}
Combine 2\sqrt{-a+100} and -\sqrt{-a+100} to get \sqrt{-a+100}.
\sqrt{100-a}p\sqrt{-a+100}=b
Swap sides so that all variable terms are on the left hand side.
\left(\sqrt{100-a}\right)^{2}p=b
Multiply \sqrt{100-a} and \sqrt{-a+100} to get \left(\sqrt{100-a}\right)^{2}.
\left(100-a\right)p=b
Calculate \sqrt{100-a} to the power of 2 and get 100-a.
100p-ap=b
Use the distributive property to multiply 100-a by p.
-ap=b-100p
Subtract 100p from both sides.
\left(-p\right)a=b-100p
The equation is in standard form.
\frac{\left(-p\right)a}{-p}=\frac{b-100p}{-p}
Divide both sides by -p.
a=\frac{b-100p}{-p}
Dividing by -p undoes the multiplication by -p.
a=-\frac{b}{p}+100
Divide b-100p by -p.
b=\sqrt{100-a}p\sqrt{-a+100}
Combine 2\sqrt{-a+100} and -\sqrt{-a+100} to get \sqrt{-a+100}.
b=\left(\sqrt{100-a}\right)^{2}p
Multiply \sqrt{100-a} and \sqrt{-a+100} to get \left(\sqrt{100-a}\right)^{2}.
b=\left(100-a\right)p
Calculate \sqrt{100-a} to the power of 2 and get 100-a.
b=100p-ap
Use the distributive property to multiply 100-a by p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}