b + 3 a - 6 = ( a b - 2 b ) + ( 3 a - 6
Solve for a (complex solution)
\left\{\begin{matrix}\\a=3\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&b=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=0\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&a=3\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=3\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&b=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=0\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&a=3\end{matrix}\right.
Share
Copied to clipboard
b+3a-6-ab=-2b+3a-6
Subtract ab from both sides.
b+3a-6-ab-3a=-2b-6
Subtract 3a from both sides.
b-6-ab=-2b-6
Combine 3a and -3a to get 0.
-6-ab=-2b-6-b
Subtract b from both sides.
-6-ab=-3b-6
Combine -2b and -b to get -3b.
-ab=-3b-6+6
Add 6 to both sides.
-ab=-3b
Add -6 and 6 to get 0.
\left(-b\right)a=-3b
The equation is in standard form.
\frac{\left(-b\right)a}{-b}=-\frac{3b}{-b}
Divide both sides by -b.
a=-\frac{3b}{-b}
Dividing by -b undoes the multiplication by -b.
a=3
Divide -3b by -b.
b+3a-6-ab=-2b+3a-6
Subtract ab from both sides.
b+3a-6-ab+2b=3a-6
Add 2b to both sides.
3b+3a-6-ab=3a-6
Combine b and 2b to get 3b.
3b-6-ab=3a-6-3a
Subtract 3a from both sides.
3b-6-ab=-6
Combine 3a and -3a to get 0.
3b-ab=-6+6
Add 6 to both sides.
3b-ab=0
Add -6 and 6 to get 0.
\left(3-a\right)b=0
Combine all terms containing b.
b=0
Divide 0 by 3-a.
b+3a-6-ab=-2b+3a-6
Subtract ab from both sides.
b+3a-6-ab-3a=-2b-6
Subtract 3a from both sides.
b-6-ab=-2b-6
Combine 3a and -3a to get 0.
-6-ab=-2b-6-b
Subtract b from both sides.
-6-ab=-3b-6
Combine -2b and -b to get -3b.
-ab=-3b-6+6
Add 6 to both sides.
-ab=-3b
Add -6 and 6 to get 0.
\left(-b\right)a=-3b
The equation is in standard form.
\frac{\left(-b\right)a}{-b}=-\frac{3b}{-b}
Divide both sides by -b.
a=-\frac{3b}{-b}
Dividing by -b undoes the multiplication by -b.
a=3
Divide -3b by -b.
b+3a-6-ab=-2b+3a-6
Subtract ab from both sides.
b+3a-6-ab+2b=3a-6
Add 2b to both sides.
3b+3a-6-ab=3a-6
Combine b and 2b to get 3b.
3b-6-ab=3a-6-3a
Subtract 3a from both sides.
3b-6-ab=-6
Combine 3a and -3a to get 0.
3b-ab=-6+6
Add 6 to both sides.
3b-ab=0
Add -6 and 6 to get 0.
\left(3-a\right)b=0
Combine all terms containing b.
b=0
Divide 0 by 3-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}